
© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 214–229, 2015.
DOI: 10.1007/978-3-319-19069-3_14

Specification and Incremental Maintenance
of Linked Data Mashup Views

Vânia M.P. Vidal1, Marco A. Casanova2(), Narciso Arruda1, Mariano Roberval1,
Luiz Paes Leme3, Giseli Rabello Lopes4, and Chiara Renso5

1 Department of Computing, Federal University of Ceará, Fortaleza, CE, Brazil
{vvidal,narciso,mariano}@lia.ufc.br

2 Department of Informatics,
Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

casanova@inf.puc-rio.br
3 Fluminense Federal University, Niteroi, RJ, Brazil

lapaesleme@ic.uff.br
4 Computer Science Department,

Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
giseli@dcc.ufrj.br

5 ISTI Institute of National Research Council, Pisa, Italy
chiara.renso@isti.cnr.it

Abstract. The Linked Data initiative promotes the publication of previously
isolated databases as interlinked RDF datasets, thereby creating a global scale
data space, known as the Web of Data. Linked Data Mashup applications,
which consume data from the multiple Linked Data sources in the Web of Data,
are confronted with the challenge of obtaining a homogenized view of this
global data space, called a Linked Data Mashup view. This paper proposes an
ontology-based framework for formally specifying Linked Data Mashup views,
and a strategy for the incremental maintenance of such views, based on their
specifications.

Keywords: Data mashup application · RDF dataset interlinking · Linked data ·
View maintenance

1 Introduction

The Linked Data initiative [2] brought new opportunities for building the next genera-
tion of Semantic Mashup applications [8]. By exposing previously isolated datasets as
data graphs, which can be interlinked and integrated with other datasets, Linked Data
allows creating a global-scale interlinked data space, known as the Web of Data. The
success of the Linked Data initiative is mainly due to the adoption of known Web
standards, such as Web infrastructure standards (URIs and HTTP), Semantic Web
standards (RDF and RDFS) and vocabularies, which facilitate the deployment of
Linked Data sources.

 Specification and Incremental Maintenance of Linked Data Mashup Views 215

A linked data mashup is an (Web) application that offers new functionality by
combining, aggregating, and transforming data available on the Web of Data [11],
[19]. Thanks to the new technologies that have been developed by the Semantic Web
community, a great amount of linked data mashups were recently produced [11], in
several domains. A simple example of Linked Data Mashup is BBC Music [13] which
integrates data from two Linked Data sources, DBpedia [3] and MusicBrainz [20].

Linked Data Mashup (LDM) applications are confronted with the challenge of ob-
taining a homogenized view of this global data space, which we call a Linked Data
Mashup view (LDM view). The creation of a LDM view is a complex task which in-
volves four major challenges: (1) selection of the Linked Data sources that are rele-
vant for the application; (2) extraction and translation of data from different, possibly
heterogeneous Linked Data sources to a common vocabulary; (3) identification of
links between resources in different Linked Data sources; (4) combination and fusion
of multiple representations of the same real-world object into a single representation
and resolution of data inconsistencies to improve the quality of the data.

To be useful, a LDM view must be continuously maintained to reflect dynamic da-
ta sources updates. Basically, there are two strategies for materialized view mainten-
ance. Re-materialization re-computes view data at pre-established times, whereas
incremental maintenance periodically modifies part of the view data to reflect updates
to the database. It has been shown that incremental maintenance generally outper-
forms full view recomputation [1,7,9,15].

In this paper, we investigate the problem of incremental maintenance of LDM
views. First, we propose an ontology-based framework for formally specifying LDM
views. In our framework, an LDM view is specified with the help of exported views,
sameAs linkset views, data fusion rules and a normalization function. The LDM view
specification is used to automatically materialize the mashup view. Then, we propose
a strategy that uses the LDM view specification for incrementally maintain the ma-
shup view materialization.

The incremental maintenance strategy of LDM views is the major contribution of
this paper. The strategy addresses the problem of dealing with the combination and
fusion of multiple representations of the same real-world object when the Linked Data
sources are updated. As discussed in the related work section, this problem received
little attention and yet poses new challenges due to very nature of mashup data.

The paper is organized as follows. Section 2 presents the framework to create
LDM views. Section 3 discusses how to maintain LDM Views. Section 4 reviews
related work. Finally, Section 5 contains the conclusions.

2 Ontology-Based Framework for LDM View Specification

2.1 Overview

In this section, we discuss a three level ontology-based framework, as summarized in
Figure 1, to formally specify LDM views. In the Mashup View Layer, the mashup
view ontology OD specifies the concepts of the mashup application (i.e., the concep-
tual model), which is the common vocabulary for integrating data exported by the
Linked Data sources.

216 V.M.P. Vidal et al.

Fig. 1.

In the Web of Data Lay
OSi, published on the Web
tologies are depicted in the

Each Linked Data sourc
ontology OEi and a set of r
vocabulary of OEi is the sub
of the rules in MEi. The ex
Linkset Views Layer in Fig

We consider two types
ported by a Linked Data so
created based on a sameAs
mashup application.

As detailed in the follow
λ = (D, OD, E1, ..., En, EL

• D is the name of the mas
• OD is the mashup view on
• E1, ..., En are exported vi

bularies are subsets of th
• EL1,…, ELp are exported
• ML1, …, MLq are mashup
• μ is a set of fusion rules
• η is a normalization fun

IRIs of the exported view
• Q is a set of quality asse

the Linked Data sources
cation of quality assessm

The process for generati
Modeling of the mashup on
fications; (3) Generation o
Generation of the mashup
normalization function, fus
detailed in the following su

 Three Level Ontology-Based Framework

yer, each data source Si is described by a source ontol
according to the Linked Data principles. These source
Web of Data layer in Figure 1.

ce Si exports one or more views. Each such view Ei has
rules MEi that map concepts of OSi to concepts of OD. T
bset of the vocabulary of OD whose terms occur in the h
ported ontologies are depicted in the Exported Views

gure 1.
of sameAs links: exported sameAs links, which are

ource, and mashup sameAs links, which are automatica
s linkset view specification [5] specifically defined for

wing subsections, a LDM view specification is an n-tuple
L1,…, ELp, ML1,…,MLq, μ, η, Q), where:

shup view
ntology
iew specifications with ontologies OE1,...,OEn, whose vo

he vocabulary of OD
d sameAs linkset view specifications between E1, ..., En
p sameAs linkset view specifications between E1, ..., En
from OE1,...,OEn to OD
nction symbol whose interpretation defines how to rem
ws to IRIs of the LDM view
essment metrics, which are used to quantify the quality
. This information is required by fusion rules. The spec

ment metric [16] is out of the scope of this work.

ing the LDM view specification λ consists of 5 steps:
ntology View; (2) Generation of the exported views spe
of the exported sameAs linkset view specifications;
sameAs linkset view specifications; (5) Definition of

sion rules and quality assessment metrics. Steps 2 to 5
bsections.

logy
on-

s an
The

head
and

ex-
ally
the

oca-

map

y of
cifi-

(1)
eci-
(4)
the
are

 Specification and Incremental Maintenance of Linked Data Mashup Views 217

In our framework, the materialization of a LDM view specification λ is automati-
cally processed based on its specification and consists of four steps:

1. Materialization of the exported views. This step translates source data to the ex-
ported view vocabulary as specified by the mapping rules in the exported view
specification.

2. Materialization of the exported sameAs linksets views. Given an exported link-
set view EL over a Linked Data source S, this step exports sameAs links from S to
the LDM view materialization.

3. Materialization of the mashup sameAs linksets. Given a mashup linkset view
ML, this step computes sameAs links based on the specification of ML.

4. Materialization of the mashup view. This step materializes the mashup view by
applying the normalization function and the fusion rules to the materialized ex-
ported views and the materialized sameAs Linkset views. It includes the combina-
tion and fusion of multiple representations of the same real-world object into a sin-
gle representation and the resolution of data inconsistencies.

2.2 Running Example

Throughout the paper, we will adopt a simple example of a mashup application about
music, called DBB_Music, which integrates data from two Linked Data sources:
DBpedia [3] and MusicBrainz [20]. Figure 2 depicts, in UML notation, the application
ontology Music_OWL for the DBB_Music mashup, which reuses terms from three
well-known vocabularies: FOAF (Friend of a Friend), MO (Music Ontology) and DC
(Dublin Core). We use the prefix “moa:” for the new terms defined in the Mu-
sic_OWL ontology. DBpedia uses the DBpedia Ontology [21] which we call DBpe-
dia_OWL, and we use the prefix “dbpedia-owl:” to refer to it. MusicBrainz uses the
Music Ontology [17] and we use the prefix “mo:” to refer to it.

Fig. 2. Music_OWL

2.3 Specification and Materialization of Exported Views

An exported view specification is a quintuple (E, S, OS, OE, ME), where:

• E is the name of the view
• S is a Linked Data source
• OS is the ontology of S
• OE is the exported view ontology such that the terms of its vocabulary occur in the

heads of the mapping rules in M
• ME is a set of mapping rules from OS to OE

218 V.M.P. Vidal et al.

Fig. 3. (a) Data sources state; (b) Materialized Exported views and linkset views; (c) LDM view

 Specification and Incremental Maintenance of Linked Data Mashup Views 219

In our framework, each linked data source exports a view whose specification is
automatically generated considering the source ontology, the application ontology and
the mappings between the source ontology and the application ontology. Note that,
when an exported view E is part of a LDM view specification, the vocabulary of the
ontology OE must be a subset of the vocabulary of the mashup view ontology, as re-
quired in Section 2.1. The problem of generating exported views specifications is
addressed in our previous work [18] and it is out of the scope of this work.

Consider the mashup application DBB_Music introduced in Section 2.1. An exported
view specification, DBpedia_EV, which uses the data source DBpedia can be defined
based on the mappings rules between Music_OWL and DBpedia_OWL. Due to space
limitation, the mappings rules are omitted here. The vocabulary of the exported view
ontology of DBpedia_EV then is:{mo:Record, mo:MusicArtist, mo:Track,
foaf:homepage, moa:labelName, dc:title, dc:date, foaf:name, dc:description, mo:track,
foaf:maker, foaf:made}

An exported view specification, MusicBrainz_EV, which uses the data source Mu-
sicBrainz can be likewise defined. The vocabulary of the exported view ontology of
MusicBrainz_EV is:{mo:Record, mo:MusicArtist, mo:Track, moa:labelName, dc:title,
dc:date, foaf:name, foaf:homepage, mo:track_number, mo:track, foaf:maker,
foaf:made}

A materialization of an exported view requires translating source data into the ex-
ported view vocabulary as specified by the mapping rules. Referring to our case
study, Figure 3(b) shows materializations of the exported views MusicBrainz_EV and
DBpedia_EV obtained by applying the mappings rules.

2.4 Specification and Materialization of Exported sameAs Linkset Views

In our framework, the existing sameAs links between resources of different exported
views should also be exported to the mashup view. To create exported links, the user
should first specify an exported sameAs linkset view and then materialize the links.

Let (T, ST, OST, OT, μT) and (U, SU, OSU, OU, μU) be two exported views. An ex-
ported sameAs linkset view specification is a tuple (EL, T, U, C, CST, CSU), where:

• EL is the name of the view;
• (T, ST, OST, OT, MT) and (U, SU, OSU, OU, MU) are exported view specifications;
• C is a class in both the vocabularies of the exported view ontologies OT and OU;
• CST is a class in the vocabulary of the data source ontology OST of ST such that there

is a rule in MT, indicating that instances of CST are mapped to instances of C;
• CSU is a class in the vocabulary of the data source ontology OSU of SU such that

there is a rule in MU, indicating that instances of CSU are mapped to instances of C;

Let sT and sU be states respectively of ST and SU. The materialization of EL in sT
and sU is the set EL[sT,sU] defined as:

(t, owl:sameAs, u) א EL[்ݏ, ௎] iffݏ
(t, owl:sameAs, u) א ்ݏ ∧ (t, rdf:type, ܥௌ்) א ௌ்ሻܥ ሿሺ்ݏሾܫ ∧

 (u, rdf:type, ܥௌ௎) א .ௌ௎ሻܥ ௎ሿሺݏሾܫ

220 V.M.P. Vidal et al.

That is, EL[sT,sU] imports sameAs links from sT whose subject is in the interpreta-
tion in sT of the class CST and whose object is in the interpretation in sU of the class
CSU.

Consider, for example, the exported views MusicBrainz_EV and DBpedia_EV in-
troduced in Section 2.3. As shown in Figure 3(a), the data source MusicBrainz con-
tains sameAs links matching instances of class mo:Record with instances of class
dbpedia_owl:Albums. It also contains sameAs links matching instances of
mo:MusicArtist with dbpedia_owl:MusicalArtist. In order to materialize the sameAs
links for the instances of the exported views MusicBrainz_EV and DBpedia_EV, two
exported linkset views should be specified:

• (EL1, MusicBrainz_EV, DBpedia_EV, mo:Record, mo:Record, dbpedia-
owl:Album)

• (EL2, MusicBrainz_EV, DBpedia_EV, mo:MusicArtist, mo:MusicArtist, dbpedia-
owl:MusicalArtist)

Referring to Figure 3(a) of our case study, the sameAs link from mb:ma1 to
dbp:ma1 is materialized by EL2, and the sameAs link from mb:r1 to dbp:a1 is mate-
rialized by EL1.

2.5 Specification and Materialization of Mashup sameAs Linkset Views

In our framework, mashup sameAs links are inferred by matching property values of
resources defined in the exported views. To create mashup links, the user should first
specify the mashup sameAs linkset view and then materialize the links. More precise-
ly, a mashup sameAs linkset view specification is a tuple (ML, T, U, C, p1,…, pn, μ),
where:

• ML is the name of the view
• (T, ST, OST, OT, μT) and (U, SU, OSU, OU, μU) are exported view specifications
• C is a class in both the vocabularies of the exported view ontologies OT and OU;
• p1, …, pn are properties of class C in both the vocabularies of the exported view

ontologies OT and OU
• μ is a 2n-relation, called the match predicate

Let eT and eU be states respectively of T and U. The materialization of ML in eT and
eU is the set ML[eT,eU] defined as:

(t, owl:sameAs, u) ∈ ML[eT,eU] iff there are triples
 (t, rdf:type, C), (t, P1, v1),…,(t, Pn, vn) ∈ eT and
 (u, rdf:type, C), (u, P1, w1),…,(u, Pn, wn) ∈ eU

 such that (v1,…, vn , w1,…, wn) ∈ μ

Consider the exported views MusicBrainz_EV and DBpedia_EV introduced in Sec-
tion 3.3. Then, sameAs linkset views could be specified for matching instances of the
class mo:Track. As an example, consider the mashup sameAs view specification for
mo:Track: (ML1, MusicBrainz_EV, DBPedia_EV, mo:Track, dc:title, p), where the
match predicate p is defined as (v1, w1) ∈ p iff σ(vk, wk) ≥ α, for each k=1, where σ

 Specification and Incremental Maintenance of Linked Data Mashup Views 221

is the 3-gram distance [14] and α = 0.5. Referring to our case study, Figure 3(b)
shows the sameAs links automatically created using ML1.

2.6 Specification of the Normalization Function and Fusion Assertions

In this section, we first introduce the concepts of normalization function and fusion
assertions, then we describe how the data fusion rules are induced from the fusion
assertion.

Normalization Function. The LDM view specification includes a normalization
function, denoted η, that remaps all IRIs in the exported views that are declared to
denote the same object, via sameAs links, to one canonical target IRI. The normaliza-
tion function must satisfy the following axiom (using an infix notation for sameAs):

(N1) ∀x1∀x2(x1 sameAs x2 ⇔ η(x1) = η(x2))
which says that the normalization function must remap to the same IRI two IRIs x1
and x2 iff they are declared to be equivalent via a sameAs statement of the form “x1
sameAs x2”.

The normalization function partitions the IRIs of the exported views resources into
a set of equivalence classes. In the materialization of the LDM view, all IRIs in the
same equivalence class are homogenized by grouping all properties of those IRIs into
one canonical target IRI. The canonical IRI also have owl:sameAs links pointing to
the original IRIs, which makes it possible for applications to refer back to the original
data sources on the Web.

Referring to our case study, the equivalence classes induced by the sameAs links in
Figure 3(b) are: ε1={dbp:ma1, mb:ma1}, ε2={dbp:a1, mb:r1}, ε3={dbp:s2, mb:t2},
ε4={dbp:s1}, ε5={ mb:t1}.

Data Fusion Assertions and Data Fusion Rules. In the rest of this section, let D be a
LDM view, OD=(VD, ΣD) be the ontology of D, and η be the normalization function.
Let C be a class in VD. We define

Props(C, VD) = {P / P is a property in VD and C is a subclass of the domain of P}
In our approach, the user is free to define how to resolve the problem of contradic-

tory attribute values when combining multiple representations of the same real-world
object into a single representation (canonical IRI). This is specified with the help of
data fusion property assertions.

A data fusion property assertion (FPA) for a property P in the context of a class C
is an expression of form “Ψ: P[C] ≡ f /Q”, where Ψ is the name of the FPA, C is a
class in VD, P and Q are properties in Props(C, VD), and f is a data fusion function
symbol, which denotes a function whose domain is a set of sets of individuals and
whose range is a set of individuals.

Data fusion assertions should be regarded as a shorthand notation for a class of da-
ta fusion rules. A set A of data fusion assertions defined over the vocabulary VD of D,
induces a set of fusion rules for D as follows:

• Let C be a class in VD and P be a property in Props(C, VD). Assume that the asser-
tion “Ψ: P[C] ≡ f /Q” is in A and that S1, …, Sn are all the exported views of D

222 V.M.P. Vidal et al.

whose vocabulary contains class C and property Q. Then, the fusion rule for P in
the context C induced by A is

 P(x,u)← u = f(v/B[x,v]) where:
 B[x,v]= ((C(x1),Q(x1,v))S1, x=η(x1));…;((C(xn),Q(xn,v))Sn, x=η(xn))

The subscript Si indicates the exported view against which (C(xi), Q(xi,v)) will be
evaluated. Intuitively, {v/B[x,v]} denotes the set of individuals v that satisfy B[x,v].
Then, f(v/B[x,v]) denotes the individual to which f maps the set {v/B[x,v]}.

• Let C be a class in VD and P be a property in Props(C, VD). Assume that there is no
assertion in A for property P in the context of C and that S1,…,Sn are all the ex-
ported views of D whose vocabulary contains C and P. Then, the fusion rule for P
in the context C induced by A is
 P(x,v)←((C(x1),P(x1,v))S1, x=η(x1));…;((C(xn),P(xn,v))Sn, x=η(xn))

• Let C be a class in VD. Assume that S1,…,Sn are all the exported views of D whose
vocabulary contains C. Then, the fusion rule for class C induced by A is
 C(x)←((C(x1))S1, x=η(x1));… ;((C(xn))Sn, x=η(xn))
For example, let the FPA for the moa:labelName property in the context of class

mo:Record be
Ψ:moa:labelName[mo:Record]≡KeepSingleValueByReputation/moa:labelName

Then, this FPA induces the following fusion rule:

moa:labelName(x,u)←u=KeepSingleValueByReputation(v/
 (mo:Record(y),moa:labelName(y,v))DBpedia_EV,x=η(y);
 (mo:Record(z),(moa:labelName(z,v))MusicBrainz_EV,x=η(z))).

The fusion rule creates a triple of the form “(x, moa:labelName, u)” in a materializa-
tion of the LDM view by taking u as the most reputable name for x found in the mate-
rialization of the two exported views, MusicBrainz_EV and DBpedia_EV.

If no FPA was specified for the moa:labelName property in the context of class
mo:Record, then the following default fusion rule would be induced:

moa:labelName(x,v)←(mo:Record(y),moa:labelName(y,v))DBpedia_EV,x=η(y));
 (mo:Record(z),(moa:labelName(z,v))MusicBrainz_EV,x=η(z))).

This fusion rule creates a triple for each values of moa:labelName coming from an
exported view.

2.7 Materialization of the LD Mashup View

In this section we describe how to materialize a LDM view by applying the normali-
zation function and data fusion rules to the materialized exported views and the mate-
rialized sameAs Linkset views. The materialization process includes the combination
and fusion of multiple representations of the same real-world object into a single re-
presentation and the resolution of data inconsistencies [4].

We begin by introducing the notation that will be used in this section:

 Specification and Incremental Maintenance of Linked Data Mashup Views 223

• λ = (D, OD, E1,..., En , EL1 ,…, ELp , ML1,…, MLq, μ, η, Q) is a LDM view specifi-
cation.

• VD is the vocabulary of OD
• C ={ C / C is a class in VD}

• P ={ P/ P is a property in VD}
• e1 ,…, en are states of E1 ,..., En and l1 ,…, lm are states of EL1 ,…, ELp, ML1,…, MLq,

with m=p+q
• s = (e1 ,…, en , l1 ,…, lm)
• IRIs(s) = { x / x is the subject of a triple in a tripleset in s }
• ε1,…,εw are the equivalence classes induced by l1 ,…, lm
• [εi] denotes the IRI that represents εi
• ηs denotes the interpretation of η for the ε1,…,εw

Definition 1: I[s](T) denotes the set of triples that state s assigns to a class or property
T, i.e., the interpretation of T in s, defined as follows:
• Let C be a class in VD. Assume that μ has a fusion rule whose head uses C and that

the rule is of the form
 C(x) ← (C(x1)S1, x=η(x1)); … ;(C(xp)Sq, x=η(xn))
Then, the interpretation of C induced by μ in s, also denoted I[s](C), is defined as:
 (x, rdf:type, C) ∈ I[s](C) iff (x, rdf:type, C) ∈ I[e1](C), x=ηs (x1)) ∨…∨
 (x, rdf:type, C) ∈ I[en](C), x=ηs (xn)).

• Let P be a property in VD. Assume that μ has a fusion rule whose head uses P and
that the rule is of the form
 P(x,v)←(C(x1),P(x1, v))S1,x=η(x1));…;((C(xn), P(xn, v))Sn, x=η(xn)).
Then, the interpretation of P induced by μ in s, also denoted I[s](P), is defined as:
 (x, P, v) ∈ I[s](P) iff ((x, rdf:type, C)∈ I[e1](C), (x,P,v) ∈ I[e1](P), x=ηs(x1)) ∨

 …∨ ((x, rdf:type, C) ∈ I[en](C), (x,P,v) ∈ I[en](P), x=ηs(xn))
• Let P be a property in VD. Assume that μ has a fusion rule whose head uses P and

that the rule is of the form
 P(x, u)← u = f(v/B[x,v]) where:
 B[x,v]=((C(x1),Q(x1,v))S1, x=η(x1)); …;((C(xn),Q(xn,v))Sn, x=η(xn))
Then, the interpretation of P induced by μ in s, also denoted I[s](P), is defined as:
 (x, P, u) ∈ I[s](P) iff u = I[s](f)({v / I[s](B[x,v])=true})

• If there is more than one fusion rule in μ whose head uses P, then I[s](P) is the
union of all sets of triples as defined on the right-hand sides of the double implica-
tions above.

Definition 2: Recall that C is the set of all classes in VD and P is the set of all proper-
ties in VD and εi is an equivalence class induced by l1,…, lm. We define the DataFu-
sion function as follows:

DataFusion(εi, s) = ∪C∈C { (x, rdf:type, C) ∈ I[s](C) / x = [εi] } ∪

 ∪P∈P { (x, P, y) ∈ I[s](P) / x = [εi] } ∪
 ∪ { ([εi], owl:sameAs, y) / y ∈ εi ∧ y ≠ [εi] }.

224 V.M.P. Vidal et al.

Definition 3: We define the state d or the materialization of D induced by s as (recall
that ε1,…,εw are the equivalence classes induced by l1 ,…, lm):

 d = ∪i=1,...,w DataFusion(εi, s).

Referring to our case study, Figure 3(c) shows the state of the mashup view com-
puted from the states of the exported views and sameAs linkset views in Figure 3 (b).
The mashup view has 5 resources which are computed by applying the DataFusion
function to equivalence classes ε1,…,ε5 defined in Section 2.6.

3 Incremental Maintenance of LDM Views

We now turn to the problem of maintaining a LDM view, when update operations are
applied to the Linked Data sources. In this section, let:

• λ = (D, OD, E1,..., En, EL1,…, ELp, ML1,…,MLq,μ,η,Q) be an LDM view specifica-
tion

• e1 ,…, en be states of E1 ,..., En and l1 ,…, lm be states of EL1 ,…, ELp, ML1,…, MLq,
with m=p+q

• s = (e1 ,…, en , l1 ,…, lm)
• d be the state of D induced by s

The incremental view maintenance problem is schematically described by the dia-
gram in Figure 4. The user specifies an update u against a base data source, which
results in new states e’1,…,e’n of the exported views and new states l’1 ,…, l’m of the
sameAs views. Let d’ be the state of D induced by (e’1,…,e’n, l’1,…,l’m). We say that a
set of updates UD over the state d correctly maintains D iff UD(d) = d’.

Fig. 4. Incremental View Maintenance Problem

Fig. 5. Suggested Platform for LDM View Maintenance

 Specification and Incremental Maintenance of Linked Data Mashup Views 225

Figure 5 shows the main components of the architecture we suggest to incremental-
ly maintain the LDM view D. For each data source Si that exports a view Ei to D,
there is a Source View Controller, with the following functionality:

1. Identify updates on Si that are relevant to D, that is, relevant to exported views or
materialized linkset views used to construct D. This is computed from the specifi-
cation of the exported views and linkset views.

2. For each relevant update u, create the set: R = {r / r is the IRI of a resource affected
by u}.

3. Send R to the LDM View Controller.

Note that R can be automatically computed based on the exported and linkset views
specifications. Hence, no access to the mashup view is required. The problem of compu-
ting R is out of the scope of this paper. A similar problem was addressed in a previous
work [22].

The LDM View Controller receives R and then performs the incremental mainten-
ance of the exported and linkset views followed by the incremental maintenance of
mashup view D. The LDM View Controller has 4 main components (see Figure 5):

• EVM Module: Maintains the exported views E1,…, En.
• ELVM Module: Maintains the exported linkset views EL1,…, ELp.
• MLVM Module: Maintains the mashup linkset views ML1,…, MLq.
• MVM Module: Maintains the mashup view D.

The incremental maintenance of linkset views has already been addressed in our
previous work [5], and the problem of incremental maintenance of exported views is
very similar to the problem addressed in [22]. Therefore, we do not address those
problems in this paper.

In order to accomplish incremental maintenance of mashup view D, the MVM
module executes the procedure Effect(R) considering t = (e’1,…,e’n, l’1 ,…, l’m), the
new states of the exported views and sameAs views. The definition of Effect depends
on the following definitions:

Definition 4: Let r be a resource in R, DA(r) = AOLD(r) ∪ ANEW(r) where:
 AOLD(r) ={x∈IRIs(t)/(∃y∈IRIs(d))((y, owl:sameAs, r)∈ d @ (y, owl:sameAs, x)∈ d)}
 ANEW(r) ={x ∈ IRIs(t) /η[t](x)= η[t](r).

Definition 5: DA(R) = ∪r ∈ R DA(r).

Definition 6: DA*(R) = ∪r ∈ R DA*(r) where
 DA*(r) = { x ∈ IRIs(d)/ (∃y ∈ DA(r)) ((x, owl:sameAs, y)∈ d)}.

Definition 7: IA*(R) = (∪r ∈ R IA*(r)) – DA*(R) where,
 IA*(r) = { x ∈ IRIs(d) / x ∉ DA*(r) ∧ (∃y ∈ DA*(r))((x, P, y) ∈ d)}.

The procedure Effect in Table 1, computes the mashup view maintenance updates
in 2 steps:

Step 1: Computes the new state of the mashup resources in DA*(R), i.e. directly af-
fected by the resources in R.
Step 2: Updates the state of the mashup resources in IA*(R), i.e. indirectly affected by
the updates in step 1.

226 V.M.P. Vidal et al.

Table 1. Procedure Effect(R)

Parameters (as defined above):
λ, the LDM view specification
t = (e’1 ,…, e’n , l’1 ,…, l’m)
d, the state of mashup view D induce by s

Input: R, the set of IRIs of resources affected by an update

Step 1. Compute the new state of the mashup resources in DA*(R).
1.1 Compute DA(R) and DA*(R); /* See Definitions 4-6
1.2. Retrieve ΔOLD the old states of the mashup resources in DA*(R);
 ΔOLD := ∪x ∈ DA*(R) I[d](x), where I[d](x) denotes the state of the resource x in state d,
 i.e., the set of triples in d where the subject of those triple is x.
1.3. Compute ΔNEW the new states of the mashup resources for the resources in DA(R);
 ΔNEW := ∪[ε] ∈ S DataFusion(ε, t) where S = {η[t](x) / x ∈ DA(R)},
 i.e., the set of equivalence classes for the resources in DA(R).
1.4. d := (d - ΔOLD) ∪ ΔNEW;

Step 2. Update the state of the mashup resources in IA*(R).
 2.1 Compute IA*(R); /* see Definition 7.
 2.2 For each m in IA*(R) do {
 2.2.1 AP(m) = { P / (∃y ∈ DA*(R)) ∧ (m, P, y) ∈ d)};
 /*AP(m) denotes the set of properties relating m with mashup resources in DA*(R).
 2.2.2. Computes the new states for the properties in AP(m);
 For each P in AP(m) do {
 ΔOLD := {(m, P, y) /(∃y ∈ d) ∧ (m, P, y) ∈ d};
 ΔNEW := I[t](P); /* see Definition 1.
 d := (d – ΔOLD) ∪ ΔNEW;

To illustrate this strategy, let u be the following update on DBpedia:

1. WITH <http://dbpedia.org>
2. DELETE { ?x dc:title “W. B. S. S.” }
3. INSERT { ?x dc:title “Wanna Be Startin' Somethin'” }
4. WHERE{?x rdfs:type dbpedia-owl:Single.?x dc:title “W.B.S.S”}

Phase 1: (Executed by the DBpedia View Controller)
Considering the state of DBpedia in Figure 3(a), the update u changes the title of the
instance dbp:s1 to “Wanna Be Startin' Somethin'”. Therefore, the DBpedia View
Controller sends R={dbp:s1} to the LDM View Controller.

Phase 2: (Executed by the LDM View Controller)
The LDM View Controller receives R and then performs the incremental maintenance
of the exported views and linkset views. Based on ML1 specification, the resources
dbp:s1 and mb:t1 are computed as equivalent. Therefore a new sameAs link (dbp:s1,
owl:sameAs, mb:t1) is added to ML1.

 Specification and Incremental Maintenance of Linked Data Mashup Views 227

Then, the procedure Effect({dbp:s1}) computes the mashup view maintenance up-
dates in 2 steps:

Step 1: Compute the new state of the mashup resources for the resources in
DA*({dbp:s1})
Step 1.1: Considering the state t and d in Figures 3(b) and 3(c) we have that:
 DA({dbp:s1})={dbp:s1, mb:t1}
 DA*({dbp:s1})={mp:t1, mp:t3}
Step 1.2: ΔOLD = I[d](mp:t1) ∪ I[d](mp:t3)
Step 1.3: ΔNEW = DataFusion(ε, t) where ε ={dbp:s1, mb:t1}
Step 1.4: d = (d - ΔOLD) ∪ ΔNEW
Step 2. Update the state of the mashup resources in IA*({dbp:s1})
Step 2.1. IA*({dbp:s1})={mp:r1}
Step 2.2. Computes the new states for the properties in AP(mp:r1)
Step 2.2.1 AP(mp:r1) = {mo:track}
Step 2.2.2 ΔOLD={(mp:r1, mo:track, mp:t1), (mp:r1, mo:track, mp:t3)}
 ΔNEW = {(mp:r1, mo:track, mp:t4)}
 d := d – ΔOLD ∪ ΔNEW

4 Related Work

The problem of incremental view maintenance has been extensively studied in the
literature. However, for the most part, views are defined over a single data source,
e.g., for relational views [6], for object-oriented views [15], for semi-structured views
[1], for XLM Views [7], [23], and for RDF views [22]. None of the proposed tech-
niques can be directly applied to data integration views.

The incremental maintenance of data integration views is address in [9], [10],
which focus on the relational views. In [10], an algorithm for the incremental main-
tenance of outerjoin and match views was developed. In [9], algebraic change propa-
gation algorithms were developed for the maintenance of the outerjoin view. Despite
of their important contributions, none of those techniques can be applied to LDM
views, since the nature of linked data sources poses new challenges for dealing with
the data fusion problem, specially the treatment of sameAs.

Recently, two frameworks were proposed for creating LDM views. The ODCleanS-
tore framework [12] offers Linked Data fusion, dealing with inconsistencies. LDIF -
Linked Data Integration Framework [19] implements a mapping language, deals with
URIs remapping and uses named graphs for registering data provenance.

To the best of our knowledge, incremental maintenance of LDM views has not yet
been addressed in any framework.

5 Conclusions

In this paper, we first proposed an ontology-based framework for specifying Linked
Data Mashup views. In the framework, a Linked Data mashup view is formally

228 V.M.P. Vidal et al.

specified with the help of exported views, linkset views, data fusion function and
normalization function. The LDM view specification is used to automatically mate-
rialize the mashup view. Then, we outlined a strategy that uses the mashup view spe-
cification for incrementally maintain the mashup view.

Our strategy addressed the problem of dealing with changes in the set of sameAs
links between IRIs from different data sources and with the very question of recom-
puting mashup property values, in the presence of updates on the data sources.

Acknowledgments. This work was partly funded by CNPq, under grants 248987/2013-5,
442338/2014-7 and 303332/2013-1, by FAPERJ, under grant E-26/201.337/2014, and by
CAPES, under grants PROCAD/NF 789/2010, 1410827.

References

1. Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., Wiener, J.L.: Incremental Maintenance
for Materialized Views over Semistructured Data. VLDB 1998, 38–49 (1998)

2. Berners-Lee, T.: Linked Data (2006). http://www.w3.org/DesignIssues/LinkedData.html
3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:

DBpedia - A crystallization point for the Web of Data. J. Web Semant. 7(3), 154–165
(2009)

4. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1:1–1:41 (2009)
5. Casanova, M.A., Vidal, V.M., Lopes, G.R., Leme, L.A.P., Ruback, L.: On materialized

sameAs linksets. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.)
DEXA 2014, Part I. LNCS, vol. 8644, pp. 377–384. Springer, Heidelberg (2014)

6. Ceri, S., Widom, J.: Deriving productions rules for incremental view maintenance. VLDB
1991, 577–589 (1991)

7. Dimitrova, K., El-Sayed, M., Rundensteiner, E.A.: Order-sensitive View Maintenance of
Materialized XQuery Views. ER 2003, 144–157 (2003)

8. Endres, B.N.: Semantic Mashups. Springer, Heidelberg (2013)
9. Griffin, T., Libkin, L.: Algebraic change propagation for semijoin and outerjoin queries.

SIGMOD Record 27(3) (1998)
10. Gupta, A., Mumick, I.S.: Materialized Views. MIT Press (2000)
11. Hanh, H.H., Tai, N.C., Duy, K.T., Dosam, H., Jason, J.J.: Semantic Information Integra-

tion with Linked Data Mashups Approaches. Int. J. Distrib. Sens. N. (2014)
12. Knap, T., Michelfeit, J., Daniel, J., Jerman, P., Rychnovsky, D., Soukup, T., Necasky, M.:

ODCleanStore: A Framework for Managing and Providing Integrated Linked Data on the
Web. In: Sean Wang, X., Cruz, I., Delis, A., Hua, G. (eds.) Web Information Systems
Engineering - WISE 2012. LNCS, vol. 7651, pp. 815–816. Springer, Heidelberg (2012)

13. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C.,
Lee, R.: Media Meets Semantic Web − How the BBC Uses DBpedia and Linked Data to
Make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

14. Kondrak, G.: N-Gram similarity and distance. In: Consens, M.P., Navarro, G. (eds.)
SPIRE 2005. LNCS, vol. 3772, pp. 115–126. Springer, Heidelberg (2005)

 Specification and Incremental Maintenance of Linked Data Mashup Views 229

15. Kuno, H.A., Rundensteiner, E.A.: Incremental Maintenance of Materialized Object-
Oriented Views in MultiView: Strategies and Performance Evaluation. IEEE TDKE 10(5),
768–792 (1998)

16. Mendes, M., Mühleisen, H., Bizer, C.: Sieve: Linked Data Quality Assessment and Fusion.
Invited paper at the LWDM 2012 (2012)

17. Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The Music Ontology. In: International
Conference on Music Information Retrieval, pp. 417−422 (2007)

18. Sacramento, E.R., Vidal, V.M.P., Macedo, J.A.F., Lóscio, B.F., Lopes, F.L.R., Casanova,
M.A.: Towards Automatic Generation of Application Ontologies. JIDM 1(3), 535–550
(2010)

19. Schultz, A., Matteini, A., Isele, R., Mendes, P., Bizer, C., Becker, C.: LDIF - A Frame-
work for Large-Scale Linked Data Integration. In: WWW2012, Developers Track (2012)

20. Swartz, A.: MusicBrainz: A Semantic Web Service. IEEE Intelligent Systems 17(1), 76–
77 (2002)

21. The DBpedia Ontology (2014). http://wiki.dbpedia.org/Ontology2014
22. Vidal, V.M.P., Casanova, M.A., Cardoso, D.S.: Incremental Maintenance of RDF Views

of Relational Data. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Rit-
ter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185, pp. 572–587.
Springer, Heidelberg (2013)

23. Vidal, V.M.P., Lemos, F.C.L., Araújo, V., Casanova, M.A.: A Mapping-Driven Approach
for SQL/XML View Maintenance. ICEIS 2008, 65–73 (2008)

	Specification and Incremental Maintenance of Linked Data Mashup Views
	1 Introduction
	2 Ontology-Based Framework for LDM View Specification
	2.1 Overview
	2.2 Running Example
	2.3 Specification and Materialization of Exported Views
	2.4 Specification and Materialization of Exported sameAs Linkset Views
	2.5 Specification and Materialization of Mashup sameAs Linkset Views
	2.6 Specification of the Normalization Function and Fusion Assertions
	2.7 Materialization of the LD Mashup View

	3 Incremental Maintenance of LDM Views
	4 Related Work
	5 Conclusions
	References

