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Abstract

Malicious software, i.e., malware, has been a persistent threat in the information security landscape since the early
days of personal computing. The recent targeted attacks extensively use non-executable malware as a stealthy attack
vector. There exists a substantial body of previous work on the detection of non-executable malware, including static,
dynamic, and combined methods. While static methods perform orders of magnitude faster, their applicability has
been hitherto limited to specific file formats.
This paper introduces Hidost, the first static machine-learning-based malware detection system designed to operate
onmultiple file formats. Extending a previously published, highly effective method, it combines the logical structure of
files with their content for even better detection accuracy. Our system has been implemented and evaluated on two
formats, PDF and SWF (Flash). Thanks to its modular design and general feature set, it is extensible to other formats
whose logical structure is organized as a hierarchy. Evaluated in realistic experiments on timestamped datasets
comprising 440,000 PDF and 40,000 SWF files collected during several months, Hidost outperformed all antivirus
engines deployed by the website VirusTotal to detect the highest number of malicious PDF files and ranked among
the best on SWF malware.

Keywords: Machine learning, Security, Malware detection, File formats, PDF, SWF

1 Introduction
One of the most effective tools for breaking into computer
systems remains malicious software, i.e., malware. While
being a well-known plague since the dawn of personal
computing, malware has developed several insidious traits
in the recent decade to serve the needs of criminal busi-
ness. One of them is the infection of files in well-known
formats used to exchange documents between businesses
and individuals. Such infection offers the following bene-
fits to attackers:

1. It is easier to lure users into opening documents than
into launching executable programs.

2. A steady stream of new vulnerabilities has been
observed in the recent years in document viewers
due to their high complexity caused, in turn, by the
complexity of document formats.
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3. Flexibility and versatility of document formats offer
ample opportunities for obfuscation of embedded
malicious content.

The same features also hinder the identification of mali-
cious documents and increase the computational burden
on the detection tools.
The favorite formats used by attackers are PDF (target-

ing Adobe Reader), Flash (targeting Adobe Flash Player),
and Microsoft Office files [1, 2]. In 2012, the pioneer-
ing exploit kit Blackhole targeted Java, PDF, and Flash
files, and its successors have continued this practice [3].
In 2013, the non-executable malware delivered through
the web was dominated by PDF and Flash files targeting
Adobe Reader andMicrosoft Office applications [2]. Flash
has seen wide deployment recently for malicious adver-
tising, i.e., placement of malware on legitimate web sites
by means of advertising networks. Even some of the most
prominent web sites have fallen victims to such attacks [3].
Although prevalently used for redirection to sites serving
exploit kits, it is not uncommon for Flash files to target
Flash Player directly.
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Non-executable files are especially popular as a means
for targeted attacks. Recent years have brought a range
of high-profile targeted attacks against governments
and industry, and they are getting more common and
ever stealthier. The Miniduke targeted attack campaign
against European government agencies used sophisti-
cated PDF files exploiting an Adobe Reader zero-day
vulnerability. Four different zero-day vulnerabilities in
Microsoft Office were used in the Elderwood attack
against the defense industry. The group APT1 or Com-
mentCrew used 0-day vulnerabilities in Adobe Reader
and Microsoft Office against government and industry
targets [4]. Among the recorded 24 0-day discovered
in 2014, 16 targeted Adobe Reader and Flash Player (cf.
Fig. 1), while Microsoft Word files dominated the list
of file types used for targeted attacks [1, 5]. In the first
9 months of 2015, 8 out of top 10 vulnerabilities lever-
aged by exploit kits were reported to be Flash Player
vulnerabilities [6].
The main difficulty in detecting malicious non-

executable files is the necessity to understand complex
formats.While such difficulty is marginalized in themeth-
ods based on dynamic analysis, i.e., rendering a file in an
instrumented sandbox, suchmethods are in general rather
slow. Static analysis methods, known for their high perfor-
mance, usually deploy ad hoc, format-specific detection
techniques which do not generalize across the formats.
To alleviate this problem, we propose a new static anal-
ysis method with the potential of being more portable
across formats. Our experiments demonstrate that, with
the incorporation of an appropriate format parser, it can
be applied to both PDF and Flash files. Before presenting
the main features of the proposed method, we review the
related work.
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Fig. 1 CVEs with the phrases “Adobe Reader” or “Flash Player” in their
description

1.1 Related work
Early work on PDF malware detection focused on n-gram
analysis [7, 8] of PDF files on disk. However, PDF is a
complex file format [9]. PDF files, especially malicious
ones, routinely employ obfuscation in the form of com-
pression, the use of different encodings and even encryp-
tion. Thus, only full-fledged PDF parsers can properly
deobfuscate them. The n-gram approach is in this regard
overly simplistic. The first method utilizing a PDF parser
was PJScan [10]. It employed anomaly detection based on
lexical properties of JavaScript code embedded inside PDF
files. However, it could not handle JavaScript code loaded
at run time or malware that does not use JavaScript in
the first place. Two simple learning-based methods were
proposed subsequently, Malware Slayer [11] and PDFrate
[12], both utilizing heuristic features based on raw bytes
of PDF files. All methods presented so far are commonly
referred to as static because they do not perform exe-
cution or emulation of any part of a PDF file. They can
be divided into deep and shallow methods, depending on
whether their parsing of PDF files conforms to the PDF
Standard [9] (deep) or not (shallow). PJScan is the only
deep method presented so far. A common vulnerability of
shallow methods is the relative ease of falsification of the
PDF physical structure, demonstrated on the example of
PDFrate [13]. A common shortcoming of all pure static
methods is their inability to detect dynamically loaded
threats, e.g., when the analyzed file does not contain attack
code but instead loads it over the network or from another
file.
Along with the described static methods, dynamic

approaches were developed to leverage the additional
information obtained by observing the effects of opening
a PDF file at run time. Not reliant on examining the PDF
file at all, dynamic methods are immune to PDF obfusca-
tion and physical structure falsification. Early approaches
were based on software emulation [14, 15]. However, soft-
ware emulation was shown to be susceptible to evasion
and computationally intensive. Other popular dynamic
approaches include Wepawet [16] based on the sandbox
JSand [17] and MalOffice based on CWSandbox [18].
Snow et al. proposed to employ hardware virtualization
and evaluated their system ShellOS [19] on PDF malware.
Tang et al. used anomaly detection on low-level hard-
ware features [20]. While the dynamic approaches tend
to be more accurate than the static ones, their execu-
tion time renders them inadequate for detectingmalicious
documents on busy networks in real time. Furthermore,
building and maintaining a dynamic detector capable of
emulating every version of a vulnerable software product
in combination with every version of each of its supported
operating systems and libraries is a costly and techni-
cally challenging task. On the other hand, it suffices to
omit one combination of target software from the detector
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and a threat designed for that specific version will go
undetected.
As an attempt to achieve the speed of static approaches

with the accuracy of dynamic ones, combined static and
dynamicmethods were subsequently developed. MDScan
performs static JavaScript extraction and dynamic code
execution [21], but the complexity of emulation of the
PDF JavaScript API with undocumented features pro-
hibits a complete and error-free solution. MPScan, on
the other hand, hooks into Adobe Reader for flawless
JavaScript extraction and deobfuscation but performs
static exploit detection [22]. Due to its design, it is suit-
able for malware detection only on a single version of
Adobe Reader, and its dynamic component takes seconds
to run.
In contrast to fully automated methods presented so far,

Nissim et al. propose to use an active learning approach,
where a human expert manually labels interesting sam-
ples for a machine learning algorithm, with the goal of
keeping the detector up-to-date with the newest threats
[23]. They outline a design with a combination of signa-
ture detection and multiple methods described so far but
leave its implementation and evaluation for future work.
For a more detailed survey of many of the mentioned
PDF malware detection methods, we refer the reader
to [23].
Compared to PDF, research on detecting Flash mal-

ware has been scarce with only two methods proposed
in the recent years. The OdoSwiff system from 2009
used a heuristics-based approach on features obtained
with both static and dynamic analysis [24]. It was suc-
ceeded in 2012 by FlashDetect, which upgraded its detec-
tion from ActionScript 2 to ActionScript 3 exploits and
replaced its threshold-based approach with a Naive Bayes
classifier [25]. Both methods are based on an empirical
approach, striving to encode the knowledge of domain
experts, i.e., malware analysts, about existing ways of the
SWF exploitation. These expert features perform very
well. For example, FlashDetect’s machine learning clas-
sifier was evaluated using a training dataset comprising
only 47 samples of each class, but even this small sam-
ple size was enough to achieve a high detection accu-
racy. However, as the authors point out, some employed
heuristics-based features are not robust against commit-
ted evaders. Furthermore, embedded malware may detect
the employed dynamic execution environment based on
its difference to Adobe Flash Player, covering its behav-
ior as a reaction. In contrast, the method proposed herein
uses a data-driven approach instead of expert features,
and its detection is based on the structural differences
between benign and malicious SWF files. By remaining
exploit-agnostic, it remains open to novel attacks, its static
approach leads to faster execution and is not vulnerable to
run-time evasion.

1.2 Contributions
The proposed detection method is based on the analy-
sis of hierarchical document structure and is henceforth
abbreviated as Hidost. It is an extension of previous work
published by Šrndić and Laskov in [26], herein referred to
as SL2013. The novelty introduced in SL2013 was the use
of logical structure for characterization of malicious and
benign PDF files. PDF logical structure is a high-level con-
struct defined by the PDF Standard that organizes basic
PDF building blocks into a functional document. Results
published in [26] show that properties of malicious files
such as the presence of JavaScript and minimal use of
benign content can be accurately determined from their
logical structure. As a deep static method, SL2013 is less
affected by PDF obfuscation and physical structure falsifi-
cation that plague shallow methods. Evaluated on a real-
world dataset comprising 660,000 PDF files, SL2013 has
demonstrated a combination of detection performance
and throughput that remains unrivaled among antivirus
engines and published scientific work. Nevertheless, in a
realistic sliding window experiment on timestamped data,
the detection performance of SL2013 was shown to be
inconsistent. Its feature definition created a blind spot
exploitable by evaders and its oversized feature set created
difficulties for more memory-intensive machine learning
classifiers than the employed support vector machine.
Hidost inherits all the advantages of SL2013. It main-

tains the nearly perfect detection performance and high
throughput on PDF files that tailored SL2013 for central-
ized deployment on busy networks. As a further advan-
tage of a deep static approach, Hidost is immune to PDF
obfuscation and physical structure falsification.
Hidost furthermore addresses certain shortcomings of

SL2013 we have discovered later. In particular, we devel-
oped structural path consolidation (SPC), a technique
used to merge similar features. Such consolidated fea-
tures better preserve the semantics of logical structure
and reduce the dependency of the feature set on the spe-
cific dataset. The benefits of SPC are threefold: (a) the
attack surface for evasion is reduced; (b) changes in fea-
ture set over time are limited; and (c) the number of
features is drastically reduced. Together, these improve-
ments render Hidostmuchmore secure and practical than
SL2013.
Most importantly, however, this paper introduces a

novel system design for Hidost that enables its general-
ization to multiple unrelated file formats. To the best of
our knowledge, Hidost is the first static machine-learning-
basedmalware detection system applicable to multiple file
formats. Its generality was achieved by extending the fea-
ture definition based on the PDF logical structure to a
second file format with a hierarchical logical structure,
Flash’s SWF format. Finally, taking a step further, Hidost
not only considers the logical structure of the file but its
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content as well, enabling a higher degree of precision on
formats with less discriminative structure such as SWF.
To demonstrate the excellent detection performance of

Hidost, we experimentally evaluate it for two formats:
PDF and SWF. Our evaluation protocol is intended to
model the practical deployment of a data-driven detection
method and to account for a natural evolution of mali-
cious data. In our protocol, a detectionmodel is trained on
a fixed-size window of data and is deployed for a limited
time period. Once the model is deemed to be too old, it
is re-trained on another window of more recent data and
again evaluated for a limited time period. Unlike the clas-
sical cross-validation methods common in evaluation of
machine learning algorithms, our experimental protocol
accounts for a temporal nature of data in security appli-
cations and never predicts the past data from the future
one.
In summary, the main contributions of this paper are as

follows:

• A static machine-learning-based malware detector,
Hidost, the first such system applicable to different
file formats based on their logical structure and
content.

• An experimental evaluation of Hidost on two
formats, PDF and SWF, designed to reflect the
operational environment of a malware detector,
performed on a dataset of 440,000 PDF files and
unprecedented 40,000 SWF files. In our evaluation,
Hidost outperformed all antivirus engines at
VirusTotal on PDF and ranked among the best on
SWF files.

• A prototype implementation of Hidost for two file
formats, PDF and SWF, released as Open Source
software.

• Source code required to reproduce this work,
including experiments and plots, released as Open
Source Software.

• Datasets required to reproduce this work.

1.3 Outline
The structure of this paper is as follows. File formats
that Hidost is applicable to, i.e., hierarchically structured
file formats, are described in Section 2, along with a
detailed introduction to logical structures of PDF and
SWF. Hidost’s system design is described in Section 3
which covers extraction of structural elements from PDF
and SWF formats, feature definition, selection, and com-
paction as well as learning and classification. The exper-
imental evaluation, including the description of datasets
and experimental protocols, as well as a discussion of
results, is presented in Section 4. We discuss Hidost’s
extension to other file formats and present a conceptual
design for its application to office file formats OOXML

and ODF in Section 5. Finally, Section 6 presents conclu-
sions and outlines open questions for future work.

2 Hierarchically structured file formats
File formats are developed as a means to store a physical
representation of certain information. Some formats, e.g.,
text files, do not have any logical structure, but others,
e.g., HTML, do. HTML files are a physical representation
of logical relationships between HTML elements. As the
example in Fig. 2 shows, in an HTML file, a p element
might be a descendant of the body element, which in turn
has the html element as its parent.
HTML elements have a logical structure in the form of a

hierarchy. Work presented in this paper is concerned with
the detection of malware in hierarchically structured file
formats. The physical layout of the file format, which can
substantially deviate from its logical layout, is irrelevant
for the operation of the proposed method. Examples of
hierarchically structured file formats include:

• Portable Document Format (PDF)
• SWF File Format (SWF)
• Extensible Markup Language (XML)
• Hypertext Markup Language (HTML)
• Open Document Format (ODF), an XML-based

format for office documents
• Office Open XML (OOXML), a different XML-based

format for office documents
• Scalable Vector Graphics (SVG), an XML-based

format for vector graphics

In the following, we describe the hierarchical logical
structure of two file formats implemented in Hidost, PDF,
and SWF.

2.1 Portable Document Format (PDF)
This section was copied (with adaptation) from [26], copy-
righted by the Internet Society.
Portable Document Format (PDF) is an open standard

published as ISO 32000-1:2008 [9]. The syntax of PDF
comprises these four main elements:

• Objects. These are the basic building blocks in PDF.
• File structure. It specifies how objects are laid out and

modified in a PDF file.

Fig. 2 A sample HTML file
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• Document structure. It determines how objects are
logically organized to represent the contents of a PDF
file (text, graphics, etc.).

• Content streams. They provide a means for efficient
storage of various parts of the file content.

There are nine basic object types in PDF. Simple object
types are Boolean, Numeric, String, and Null. PDF strings
have bounded length and are enclosed in parentheses “(”
and “)”. The type Name is used as an identifier in the
description of the PDF document structure. Names are
introduced using the character “/” and can contain arbi-
trary characters except null (0×00). The aforementioned
five object types will be referred to as primitive types in
this paper. An Array is a one-dimensional ordered col-
lection of PDF objects enclosed in square brackets, “[”
and “]”. Arrays may contain PDF objects of different type,
including nested arrays. A Dictionary is an unordered set
of key-value pairs enclosed between the symbols “<<”
and “>>”. The keys must be name objects and must be
unique within a dictionary. The values may be of any PDF
object type, including nested dictionaries. A Stream object
is a PDF dictionary followed by a sequence of bytes. The
bytes represent information that may be compressed or
encrypted, and the associated dictionary contains infor-
mation on whether and how to decode the bytes. These
bytes usually contain content to be rendered but may also
contain a set of other objects. Finally, an Indirect object
is any of the previously defined objects supplied with a
unique object identifier and enclosed in the keywords
obj and endobj. Due to their unique identifiers, indirect
objects can be referenced from other objects via indirect
references.
The syntax of PDF objects is illustrated in a simpli-

fied exemplary PDF file shown in Fig. 3. It contains four
indirect objects denoted by their two-part object iden-
tifiers, e.g., 1 0 for the first object, and the obj and
endobj keywords. These objects are dictionaries, as they
are surroundedwith the symbols “<<” and “>>”. The first
one is the Catalog dictionary, denoted by its Type entry
which contains a PDF name with the value Catalog. The
Catalog has two additional dictionary entries: Pages and
OpenAction. OpenAction is an example of a nested dic-
tionary. It has two entries: S, a PDF name indicating that
this is a JavaScript action dictionary, and JS, a PDF string
containing the actual JavaScript script to be executed:
alert(’Hello!’);. Pages is an indirect reference to
the object with the object identifier 3 0: the Pages dic-
tionary that immediately follows the Catalog. It has an
integer, Count, indicating that there are two pages in the
document, and an array Kids identifiable by the square
brackets, with two references to Page objects. The same
object types are used to build the remaining Page objects.
Notice that each of the Page objects contains a backward

Fig. 3 Raw content of an example PDF file. Formatted for easier
reading. Details omitted for brevity. Primitive data types and
references are colored green

reference to the Pages object in their Parent entry. Alto-
gether, there are three references pointing to the same
indirect object, 3 0, the Pages object.
The relations between various basic objects constitute

the logical, tree-like document structure of a PDF file. The
nodes in the document structure are objects themselves,
and the edges correspond to the names under which child
objects reside in a parent object. For arrays, the parent-
child relationship is nameless and corresponds to an
integer index of individual elements. Notice that the doc-
ument structure is, strictly speaking, not a tree but rather
a directed rooted cyclic graph, as indirect references may
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point to other objects anywhere in the document struc-
ture. This graph can be reduced to a proper tree, called a
structural tree, as will be elaborated in Section 3.4, and we
will therefore limit ourselves to considering the PDF doc-
ument structure in its simplified, tree form, as illustrated
in Fig. 4.
The root node in the document structure is a special

PDF dictionary with the mandatory Type entry contain-
ing the name Catalog. Any object of a primitive type
constitutes a leaf, i.e., terminal node, in the document
structure.
We define a path in the PDF structural tree as a

sequence of edges starting in the Catalog dictionary and
ending with an object of a primitive type. For example,
in Fig. 4 there is a path from the root, i.e., leftmost, node
through the edges named /Pages and /Count to the
terminal node with the value 2. This definition of a path
in the PDF document structure, which we denote a PDF
structural path, plays a central role in our approach. We
print paths as a sequence of all edge labels encountered
during path traversal starting from the root node and end-
ing in the leaf node. The path from our earlier example
would be printed as /Pages/Count.
The following list shows exemplary structural paths

from real-world benign PDF files:

/Metadata

/Type

/Pages/Kids

/OpenAction/Contents

/StructTreeRoot/RoleMap

/Pages/Kids/Contents/Length

/OpenAction/D/Resources/ProcSet

/OpenAction/D

/Pages/Count

/PageLayout

Fig. 4 Structural tree of the PDF file depicted in Fig. 3. Dictionaries are
illustrated using the symbol “<< >>”, arrays using “square brackets”.
Cycles were omitted for simplicity

Our investigation shows that these are the structural paths
whose presence in a file is most indicative that the file is
benign or alternatively, whose absence indicates that a file
is malicious. For example, malicious files are not likely to
contain metadata in order to minimize file size, they do
not jump to a page in the document when it is opened
and are not well-formed so they are missing paths such as
/Type and /Pages/Count.
The following is a list of structural paths from real-world

malicious PDF files:

/AcroForm/XFA

/Names/JavaScript

/Names/EmbeddedFiles

/Names/JavaScript/Names

/Pages/Kids/Type

/StructTreeRoot

/OpenAction/Type

/OpenAction/S

/OpenAction/JS

/OpenAction

We see that malicious files tend to execute JavaScript
stored within multiple different locations upon open-
ing the document and make use of Adobe XML Forms
Architecture (XFA) forms as malicious code can also be
launched from there.

2.2 SWF file format
SWF File Format (SWF, pronounced swiff ) is a propri-
etary binary file format, its specification is published in
[27]. SWF files consist of a header and a sequence of tags,
i.e., data structures with values for predefined fields. There
are 65 different types of tags specified, each defining its
own set of fields with different names and data types.
Some of the basic SWF data types are [27]:

• 8-, 16-, 32-, and 64-bit integers, both signed and
unsigned, arrays of these types and integers with a
variable number of bytes

• Fixed- and floating-point numbers of different widths
and precisions

• Integer and fixed-point numbers with widths that are
not exponents of 2

• Strings
• Data structures such as 24- and 32-bit color records,

rectangle records, 2D transformation matrices, etc.

Figure 5 shows a very small SWF file used for illustra-
tive purposes. Clearly, the physical layout of SWF is too
obscure for direct interpretation. Instead, our description
of the SWF logical structure is based on the decoded,
human-readable depiction of the same file, illustrated in
Fig. 6. This textual description of the original SWF file



Šrndić and Laskov EURASIP Journal on Information Security  (2016) 2016:22 Page 7 of 20

Fig. 5 Hexadecimal view of a toy SWF file. Left column contains
hexadecimal addresses of first bytes of every row

was produced using the ConsoleDumper class from the
SWFRETools toolkit [28], an open-source Java toolkit for
reverse-engineering SWF files.
The illustration skips the file header as it is not used

in our method. It shows 5 SWF tags separated by dot-
ted lines: two SetBackgroundColor tags at bytes 0×14 and
0×1B, two ShowFrame tags at bytes 0×19 and 0×20 and
an End tag at byte 0×22. Tags of a SWF file are laid
out sequentially. Every tag has a header with an unsigned
16-b little-endian TagCodeAndLength field that comprises
a 10-byte tag type identifier and a 6-b tag length field,

Fig. 6 SWF file depicted in Fig. 5, decoded. Values are colored green.
Every line starts with a hexadecimal number between square brackets,
denoting the offset, in bytes, of the tag field specified in the given line
from the beginning of the SWF file

with an optional wider length field for tags longer than
62 B.
The first tag in this file is used to set the background

color of the display. It is a simple tag, defining three
unsigned 1-B values of the red (0×AA = 170), green
(0×BB = 187), and blue (0×CC = 204) color components.
The second tag makes the content of the canvas render
on screen for the duration of one frame. Following this,
the background color is set to #112233 and the screen is
refreshed one more time. The last tag signals the end of
the file.
Figure 7 illustrates a logical view of our example SWF

file in which the file is structured as a tree. It closely
follows the layout presented in the decoded SWF file
of Fig. 6. Every tag is represented by a tree node and
is a direct descendant of the abstract root node. The
edge from the root to the tag node is labeled by the
tag type name, in our case SetBackgroundColor,
ShowFrame, and End. Descendants of tag nodes are its
header and fields. Headers are connected with an edge
simply labeled Header. The edges leading to the fields
are labeled by their names, e.g., BackgroundColor.
The values of tags’ fields are represented as leafs, e.g.,
the value of the red field of the first SetBackgroundColor
tag, 170.
We define a path in the SWF structural tree, analo-

gous to the path in the PDF structural tree, as a series

Fig. 7 Logical structure of the SWF file illustrated in Fig. 5
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of edges starting in the abstract root node and end-
ing in a leaf node. For example, there is a path from
the root node through the edges labeled End, Header,
and TagAndLength ending in the leaf node with the
value 0. For better readability and consistency with PDF,
we prepend the forward slash symbol “/” to every edge
label when printing a path; hence, the path in question
prints as /End/Header/TagAndLength.
In the following section, we describe how the logical

structures of PDF and SWF files are processed for use
by learning algorithms and describe the system design of
Hidost.

3 System design
Hidost has been designed as a malware detection system
capable of learning to discriminate betweenmalicious and
benign files based on their logical structure. Due to the
semantic heterogeneity of various file formats, it is hard
to imagine a single format to act as a “common denom-
inator” for all conceivable hierarchically structured file
formats. Yet, our design clearly separates format-specific
processing steps from the detection methodology. As a
result, our method, currently tested on PDF and SWF
formats, can be extended to other formats by implement-
ing the format-specific components without rebuilding
its general framework. The proposed method was imple-
mented as a research prototype, and its feature extrac-
tion subsystem was published as open source software
[29]. The published code comprises a toolset for fea-
ture extraction from PDF (implemented in C++) and
SWF files (implemented in Python and Java). Experiment
reproduction code is published separately, as described in
Section 4.
The system design of Hidost is illustrated in Fig. 8.

There are six main stages in Hidost: structure extraction,
structural path consolidation, feature selection, vector-
ization, learning, and classification. Structure extraction
transforms the structural features of specific formats
into a common data structure—structural multimap—
representing paths in the structural hierarchy. Structural
path consolidation is intended to transform structural
paths into a more general form, removing artifacts.
Feature selection is concerned with finding the mini-
mum set of features required for a successful machine
learning application. Vectorization transforms structural
multimaps into numeric vectors processed by machine
learning methods. Learning generates a discriminative
model of malicious and benign files based on their
properties encoded in feature vectors. Finally, classifi-
cation makes a decision whether a previously unseen
sample is malicious or benign based on the learned
model.
In the following subsections, the main stages of our

approach are presented in detail.
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Fig. 8 Hidost system design

3.1 File structure extraction
The first step of our method transforms files into a
more abstract representation, their logical structure. This
step is essential to our approach because it achieves two
key goals: (a) use of logical structure for discrimination
between malicious and benign files and (b) applicability to
multiple file formats.
A suitable representation for the logical structure of

hierarchically structured file formats is a structural mul-
timap. Amultimap is a generalization of the commonmap
data structure, also known as a dictionary or associative
array. While maps provide a mapping between a key and a
corresponding value, multimaps map a key to a set of val-
ues. A structural multimap is a multimap that maps every
structural path of a structural tree to the set of all leafs
that lie on the given path. In map terminology, the struc-
tural paths represent the keys and sets of all leafs that a
path maps to represent the values of the map. An example
structural multimap is illustrated in Fig. 9. Multiple values
for the same key are delimited using vertical bar symbols
“|”. Hidost uses a simplified form of structural multimaps
presented later in this section.
The nature of the logical file structure necessitates a

multimap instead of a map because multiple leafs may
be reachable by a single structural path. With PDFs, this
occurs when a path contains an array with more than one
element, e.g., the path /Pages/Kids/MediaBox con-
tains two arrays and reaches eight leafs. In case of SWF
files, apart from arrays, multiple tags of the same type
cause multiple leafs to lie in the same path.
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Fig. 9 A complete structural multimap of the PDF file depicted in
Fig. 3. This type of structural multimap is not used in Hidost but rather
illustrated as an instructive example

Implementation of structure extraction for PDF and
SWF is presented in the following two sections.

3.1.1 PDF
The PDF logical structure is organized as a directed
rooted cyclic graph. To transform it into a structural mul-
timap, it is first necessary to reduce the graph to a directed
rooted tree instead. This is achieved by removing all cycles
from the graph. There is a cycle in the PDF logical struc-
ture when an indirect reference from a tree node at depth
dR points to a tree node lying on the same path at a depth
dT < dR. An example is shown in Fig. 3: the indirect ref-
erence at the path /Pages/Kids/Parent with depth 3
points to the dictionary located at /Pages with depth 1,
lying on the same path. Indirect references may also cause
inconsistencies in extracted tree structures. When two
indirect references located at different paths reference the
same object, it is ambiguous which is the “true” one.
Both described problems—cycles in the structural

graph and multiple references—are implicitly solved with
a simple procedure based on the breadth-first search
(BFS) algorithm. A robust PDF parser is required to nav-
igate the PDF structure of obfuscated or malformed PDF
files. Hidost utilizes the open-source Poppler PDF render-
ing library [30], version 0.18.4. The procedure starts by
locating the root node of the file structure, i.e., the Cat-
alog dictionary. Then, it performs a breadth-first search
on the entire file structure graph, inserting all pairs (p, l),
where p is a structural path and l is a leaf node located on
the path p, into the resulting structural multimap. Cycles
are avoided by skipping indirect references that point to
previously visited objects and treating them as leaf nodes
instead. Child node enumeration in alphabetical order
ensures the consistent resolution of multiple references
the same node, so that every traversal of a PDF file’s
structural graph produces the same structural multimap.
To be more precise, Hidost does not use full struc-

tural multimaps but a simplification thereof. This sim-
plification concerns the treatment of non-numeric data

types, i.e., all types except integers, real numbers, and
Booleans. Strings, PDF names, and other non-numeric
types, all convertible to strings, are replaced with a con-
stant value, 1. Binarization of non-numeric values can be
seen by comparing Figs. 9 and 10. This choice of treatment
is a trade-off between fully discarding non-numeric val-
ues and performing their extensive evaluation. Different
approaches to the treatment of string-like data types have
been proposed in related work, from static, e.g., embed-
ding strings in metric spaces [10, 31], characterizing them
with simple properties such as their length, entropy, or
distribution of keywords [11, 12] or testing them for valid
CPU instructions [15], to dynamic, e.g., CPU emulation
of strings [14, 21] or their execution [19, 20, 22]. How-
ever, all these approaches either conflict with the desired
static system design (dynamic evaluation), decrease com-
putational performance (string embedding and testing for
CPU instructions), or are easily evadable (simple string
properties).
The positive effect of the use of binarized non-numeric

values compared to their complete omission was experi-
mentally confirmed. The effects of migrating from purely
binary features used by SL2013 to numerical in Hidost are
evaluated in Section 4.3.4.

3.1.2 SWF
The SWF logical structure is more straightforward to
extract than PDF as it contains no cycles or ambigu-
ities. The approach implemented in Hidost begins by
employing the ConsoleDumper class of the SWFRE-
Tools toolkit to parse the SWF file and produce its textual
depiction, such as the one in Fig. 6. Parsing the output
generated by this tool suffices to extract the SWF logi-
cal structure. Every line of the textual output that starts
with zero or more spaces followed by an opening square
bracket “[” contains a tag or field name that represents
one edge in the structural tree. The distance of this edge
from the root node is encoded as the number of spaces
before the bracket, divided by 2. Consequently, a line with
a bracket preceded by no spaces signals the beginning of a
new tag. By keeping track of the most recent edges parsed

Fig. 10 Structural multimap and feature vector of the PDF file
depicted in Fig. 3
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at each level in the hierarchy, it is possible to reconstruct
the entire path to the edge in the current line. Finally, if
the edge name is succeeded by a colon, then this edge rep-
resents a tag field and the remainder of the line encodes
that field’s value, i.e., a leaf in the structural tree. The pair
(p, v), where p is the path at the current line and v the
parsed value, is then inserted into the structural multimap.
Strings and other non-numeric types are binarized in the
same way as with PDF.
The structural multimap corresponding to the SWFRE-

Tools output of Fig. 6 is illustrated on the left-hand side of
Fig. 11. The following section describes the second pro-
cessing step of our method, structural path consolidation.

3.2 Structural path consolidation
The syntactic richness and flexibility of many file formats
enable semantically equivalent but syntactically different
structures. Such syntactic polymorphism may decrease
the detection accuracy and, furthermore, provide a pos-
sibility for an attacker to fully avoid detection of specific
files. To address this problem, we have developed a heuris-
tic technique for consolidation of structural paths which
reduces polymorphic paths to somewhat consistent repre-
sentation. This technique can be best exemplified for the
PDF format.
We have observed that many paths common among

PDF files exhibit structural similarities to other paths.
In fact, we were able to identify groups of paths simi-
lar to each other but not identical. Paths in these groups
exhibited a similarity in one of two ways. Paths in some
groups were identical except for exactly one customiz-
able path component, while paths in other groups shared
a common repetitive subpath. Importantly, however, all
paths in a group of similar paths refer to objects with the
same purpose, i.e., the same semantic meaning, in PDF.
For example, the paths /Pages/Kids/Resources
and /Pages/Kids/Kids/Resources have a com-
mon repetitive subpath, /Kids, but both refer to
PDF dictionaries that have the same purpose—to pro-
vide a name for resources required to render a page
of a PDF file. Semantically, it is irrelevant which
path the structure extraction algorithm took before
it visited a page’s resource dictionary—all resource

Fig. 11 Structural multimap and feature vector of the SWF file
depicted in Fig. 5

dictionaries have the same semantic meaning. Likewise,
the paths /Pages/Kids/Resources/Font/F1 and
/Pages/Kids/Resources/Font/F42 only differ in
the last path segment, which the PDF Standard mandates
to be user-defined, but both refer to Font dictionaries
describing fonts for use in the PDF file. Again, regard-
less of the concrete name a specific PDF writer gives to
a font dictionary, all font dictionaries are semantically
equivalent.
The existence of semantically equivalent path groups

questions the utility of SL2013 feature definition which
treats every path as a distinct feature. It is more mean-
ingful to preserve the semantics of paths by consoli-
dating all semantically equivalent paths to one feature.
This idea, called structural path consolidation (SPC), was
implemented in Hidost and experimentally evaluated in
Section 4.3.3.
The implementation of SPC is based on the substi-

tution of key path components using regular expres-
sions. Repetitive subpaths are completely removed from
the path. For example, both paths indicated above as
examples with a common repetitive subpath would
be consolidated into the path /Pages/Resources,
removing the repetitive subpath /Kids. On the other
hand, user-defined path components are anonymized, i.e.,
replaced with the placeholder path component /Name.
For instance, both paths from the example above with
user-defined font names would be consolidated into
the path /Pages/Kids/Resources/Name (if the rule
concerning repetitive paths was not applied beforehand,
of course). Table 1 lists SPC rules employed in Hidost
for PDF, implemented using the BOOST.REGEX library.
Every rule comprises two regular expressions: one is used
to search for a pattern to replace (left) and the other to
determine the replacement string (right).
A single consolidation rule can be applied to mul-

tiple groups of semantically equivalent paths. For
example, the paths /Pages/Kids/Resources and
/Pages/Kids/MediaBox can be consolidated by the
same rule, but the resulting paths /Pages/Resources
and /Pages/MediaBox still belong to separate groups
and are, therefore, two different features.
SPC rules in Table 1 are a result of an empirical inves-

tigation of structural paths occurring in our dataset, with
the aim of minimizing their total count after transfor-
mation. However, the analysis was limited to rules that
capture generic branches of the PDF document structure
instead of dataset-specific artifacts. Some of the recog-
nizable branches in Table 1 include anonymized items
such as resources (1 and 13), entries of various name trees
(global (5) and structure tree (6)), dictionaries for map-
ping custom names into other objects (9), color space
items (17 and 18), or embedded files’ names (19). Other
rules are used to flatten hierarchies (2, 3, 7, 8, and 10)
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Table 1 PDF structural path consolidation rules

Search regular expression Substitute regular expression

1. /Resources/(ExtGState|ColorSpace|Pattern|Shading|
XObject|Font|Properties|Para)/[ˆ/]+

/Resources/ \1/Name

2. ˆPages/(Kids/|Parent/)*(Kids$|Kids/|Parent/|Parent$) Pages/

3. /(Kids/|Parent/)*(Kids$|Kids/|Parent/|Parent$) /

4. (Prev/|Next/|First/|Last/)+ <empty string>

5. ˆNames/(Dests|AP|JavaScript|Pages|Templates|IDS|
URLS|EmbeddedFiles|AlternatePresentations|
Renditions)/(Kids/|Parent/)*Names

Names/ \1/Names

6. ˆStructTreeRoot/IDTree/(Kids/)*Names StructTreeRoot/IDTree/Names

7. ˆ(StructTreeRoot/ParentTree|PageLabels)/(Kids/|
Parent/)+(Nums|Limits)

\1/ \3

8. ˆStructTreeRoot/ParentTree/Nums/(K/|P/)+ StructTreeRoot/ParentTree/Nums/

9. ˆ(StructTreeRoot|Outlines/SE)/(RoleMap|
ClassMap)/[ˆ/]+

\1/ \2/Name

10. ˆ(StructTreeRoot|Outlines/SE)/(K/|P/)* \1/
11. ˆ(Extensions|Dests)/[ˆ/]+ \1/Name
12. Font/([ˆ/]+)/CharProcs/[ˆ/]+ Font/ \1/CharProcs/Name
13. ˆ(AcroForm/(Fields/|C0/)?DR/)(ExtGState|ColorSpace|

Pattern|Shading|XObject|Font|Properties)/[ˆ/]+
\1 \3/Name

14. /AP/(D|N)/[ˆ/]+ /AP/ \1/Name
15. Threads/F/(V/|N/)* Threads/F

16. ˆ(StructTreeRoot|Outlines/SE)/Info/[ˆ/]+ \1/Info/Name
17. ColorSpace/([ˆ/]+)/Colorants/[ˆ/]+ ColorSpace/ \1/Colorants/Name
18. ColorSpace/Colorants/[ˆ/]+ ColorSpace/Colorants/Name

19. Collection/Schema/[ˆ/]+ Collection/Schema/Name

and convert linked lists to shallow sets (4) in order to cre-
ate a generic, unified view of their elements, all on the
same level. We refer the reader to the PDF Standard [9]
for a detailed explanation of these branches of the PDF
document structure.
Due to the relatively shallow SWF logical file structure

and the barring of user-defined path components, only
two SPC rules were compiled for this format, listed in
Table 2, both for handling repetitive subpaths.
No attempt was made to compile a complete list of SPC

rules. Especially for PDF, there is ample opportunity for
further anonymization and flattening of hierarchies such
as name trees and number trees not covered in our rules.
In general, to extend the list, it is advised to read the PDF
Standard looking for places in the PDF document struc-
ture where user-defined names are allowed or where there

Table 2 SWF structural path consolidation rules

Search regex Substitute regex

(DefineSprite/ControlTags/){2,} DefineSprite/
ControlTags/

(Symbol/Name/){2,} Symbol/Name/

is a well-defined list or hierarchy. However, even this lim-
ited set of rules provides the following crucial benefits
compared to SL2013:

• Reduced attack surface. Without SPC, every distinct
path with an occurrence count above a threshold
constitutes a feature. An attacker striving to evade
detection may in that case perform a hiding attack by
concealing a malicious payload at a custom path
different from any in the feature set. For example, a
path to a font with a long, randomly generated name
is highly unlikely to have been encountered before. A
malicious payload inserted there would invisible to
the detector that does not have this particular path in
its feature set. In case of SWF, where user-defined
paths are disallowed, payloads may be concealed in
very deep hierarchies, not encountered in “normal”
files. PDF also suffers from this vulnerability. Hiding
attacks are cheap to implement and the primary
weakness of SL2013. This avenue for evasion is closed
in Hidost with the use of consolidated paths.

• Limited feature set drift in time. In real-world
machine learning applications, the problem at hand
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often changes in time. This is especially true in
security applications, where defenders are forced to
adapt to unpredictable changes in attacks. This
problem is known in machine learning as concept
drift [32] and has recently started to attract interest
in security literature [33].
The continual change in data renders classifiers ever
more outdated as time progresses since their training.
Therefore, the need arises for regular updates to the
learning model, i.e., periodic classifier retraining.
With data-dependent features such as in this work, it
is advisable to perform feature selection anew before
every retraining in order to better adapt to concept
drift. Periodic feature selection causes the
obsolescence of existing features and addition of new
ones between two retraining periods. We refer to
changes in the feature set caused by periodic feature
selection as feature set drift. PDF is more susceptible
to feature set drift than SWF due to the flexibility of
its structural path definition. As Section 4.3.3 shows,
SPC is effectively used to reduce feature set drift in
Hidost.

• Feature space dimensionality reduction. Finally, SPC
has a tremendous impact on the total number of
features. Feature space dimensionality directly affects
the running time and memory requirements of
learning algorithms. In our PDF experiments with
periodic retraining, the average feature set size was
reduced by an impressive 88 %, from 10,412.5 to
1237.4 features per training. However, there are
limits in the effectiveness of SPC against manually
crafted paths. Because it knows no notion of a
semantically valid path, SPC cannot handle
unforeseen cases, e.g., arbitrary names in the Catalog
dictionary. To tackle this final “blind spot” in the
coverage of the PDF logical structure, a whitelisting
approach would be required with its complete and
up-to-date representation—a model of the entire
structure—which is out of scope of this work.

The reduced attack surface and limited feature set drift
represent an important contribution to the operational
security of Hidost as a machine-learning-based detector.
Massively reduced feature count enables its application
on even bigger datasets. Together, the described improve-
ments bring Hidost a big step towards applicability in a
real-world, operational environment as an accurate, reli-
able, and secure malicious file detector.

3.3 Feature selection
Despite the reduction of syntactic polymorphism via
structural path consolidation, there may still exist paths
that occur very infrequently in the observed data. Using
such paths for building discriminative models increases

the dimensionality of the input space without improving
classification accuracy. Therefore, feature selection—as it
is common in othermachine learning applications—has to
be carried out to limit the impact of rare features. Before
presenting the specific feature selection techniques, we
discuss the reasons why rare features occur in the two
formats studied in detail in the paper.
The SWF file format specification [27] strictly defines

the names of all tags and all their fields, prohibiting
customization. Therefore, Hidost’s feature set for SWF
theoretically comprises every structural path defined by
the SWF specification. However, in practice, no effort
has been made to enumerate all paths in the SWF logi-
cal structure. Instead, the feature set comprises all paths
observed in the training dataset, a total of 3177.
In contrast, the PDF file format specification [9] allows

the use of user-defined names in any PDF dictionary,
essentially enabling an unlimited number of different
paths. Our data indicates that this PDF feature is widely
used in practice as we have observed over 9 million dis-
tinct PDF structural paths. However, 2

3 of these paths do
not occur in more than one file. These and other paths
that occur in a small percentage of the dataset are consid-
ered anomalous. Therefore, the original SL2013 method
selected the PDF paths which occur in more than a fixed
number of training files, i.e., 1000, for its feature set. This
threshold controls the trade-off between detection accu-
racy (more paths) and model simplicity (less paths) and
may be freely adjusted.
After SPC and before every training in our periodic

retraining experimental protocol, we applied the same
occurrence threshold, i.e., 1000 files, which corresponds
to around 1 % of the training set size. This is in contrast
with SL2013, where feature selection was performed “in
hindsight”, once for the entire dataset.

3.4 Vectorization
Structural multimaps are a suitable representation of PDF
and SWF logical file structure but they cannot be directly
used by machine learning algorithms. They first need to
be transformed into feature vectors, i.e., points in the
feature space RN , in a process called vectorization.
During vectorization, structural multimaps are first

replaced by structural maps—ordinary map data struc-
tures that map a structural path to a corresponding single
numeric value. To this end, every set of values correspond-
ing to one structural path in the multimap is reduced to
its median. We selected median as a more robust statistic
than mean (here, we use the term robust in the statistical
sense, denoting that median provides a better character-
ization of the set of values in the presence of outliers
and not that it provides any robustness against adversarial
evasion). The only exception to this rule is that sets of val-
ues in SWF structural multimaps consisting primarily of
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Booleans are reduced to their means, not medians. Mean
preserves more information about Booleans than median,
which can only be 0, 1

2 , or 1, and there is no possibility of
outliers. This exception is not implemented for PDF as its
logical structure has relatively few boolean values.
Structural maps are transformed into feature vectors

f ∈ R
N by reserving a separate dimension for each specific

structural path and using values from structural maps as
values of specific dimensions. The mapping of individual
structural paths to dimensions of feature vectors is defined
before feature extraction and during feature selection and
is applied uniformly to all structural maps prior to both
training and classification. Consequently, a specific struc-
tural path corresponds to the same dimension in every
feature vector, enabling the learning algorithms to make
sense of the feature vectors.
The ordered collection of all features used by a learning

algorithm is its feature set. Figures 10 and 11 illustrate fea-
ture vectors obtained from a PDF and a SWF structural
multimap, respectively. They show a simple case when
the feature set is identical to the set of keys in the struc-
tural multimap and every value of the feature vector is
assigned. In practice, however, files usually do not contain
all structural paths present in the feature set and the cor-
responding values in the feature vectors are set to zero. In
summary, a feature vector corresponding to a structural
multimapm is a point f = f1, f2, . . . , fN in feature spaceRN

with specific values defined as

fi =
{
median(m[ pi] ), pi ∈ m
0, otherwise ∀i ∈ 1,N (1)

Here, pi denotes the ith path in the feature set and m[ pi]
denotes the value in a multimap m associated with that
path.

3.5 Learning and classification
The stages presented so far transform samples, i.e., files,
into feature vectors suitable as input for machine learn-
ing algorithms. The choice of a concrete machine learn-
ing classifier depends on a multitude of parameters,
e.g., dataset size, feature space dimensionality, available
computational resources, robustness against adversar-
ial attacks, etc., and classifiers are tailored for different
uses. The published implementation of Hidost therefore
does not comprise learning and classification subsystems.
Instead, its output can be used with the reader’s classi-
fier of choice. For experiments presented in this paper,
the Random Forest implementation of the open-source
scikit-learn Python machine learning library [34], version
0.15.0b2, was utilized. This part of Hidost was published
separately, as part of experimental reproduction code, as
detailed in the following section.

RandomForest [35] is an ensemble classifier. It is trained
by growing a forest of decision trees using CARTmethod-
ology. Each of the tRF trees is grown on its own fixed-size
random subset of training data drawn with replacement.
At every branching of a tree during training, the feature
providing the optimal split is selected from a random sub-
set comprising fRF features not previously used for this
tree. During classification, the decision of every tree is
counted as one vote and the overall outcome is the class
with the majority of votes. Random Forests are known
for their excellent generalization ability and robustness
against data noise. For the experimental evaluation, forest
size was set to 200 trees and all other parameters to their
scikit-learn defaults.

4 Experimental evaluation
An extensive experimental evaluation was performed to
assess the detection performance of Hidost and com-
pare it to related work. Entire source code and datasets
needed to reproduce all experiments and plots have been
published as open-source software [36].

4.1 Experimental datasets
Experiments were run on two datasets, one for each
file format. Both were collected from VirusTotal [37], a
website that performs an analysis of files uploaded by
Internet users using many antivirus engines. VirusTo-
tal provides detection results to researchers, enabling us
to compare Hidost’s detection performance to that of
deployed antivirus engines. In our experiments, we con-
sider those files malicious that were labeled as malicious
by at least five antivirus engines and those files benign
that were labeled benign by all antivirus engines. The
remaining files, labeled by one to four antivirus engines as
malicious, are discarded from the experiments because of
the high uncertainty of their true class label.
Our PDF dataset comprises 439,563 (446 GiB)

files, 407,037 (443 GiB) benign and 32,567 (2.7 GiB)
malicious. They were collected during 14 weeks, between
July 16 and October 21, 2012. This is the same dataset
used for the 10Weeks experiment in [26], enabling a direct
comparison with that work.
The SWF dataset was collected between August 1, 2013

and March 8, 2014 and comprises 40,816 (14.2 GiB)
files, 38,326 (14.1 GiB) benign and 2490 (190 MiB)
malicious. The VirusTotal SWF data had a benign-to-
malicious ratio of around 52:1 during the collection
period; therefore, a random subsampling of benign data
was performed to approximately match the ratio with that
of PDF data.

4.2 Experimental protocol
Our experimental protocol has the following two main
goals: (a) to evaluate the performance of Hidost under
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realistic conditions and (b) to enable the comparison of
Hidost’s detection performance on PDF to its predecessor,
SL2013. To this end, we adopt the experimental protocol
of the 10Weeks experiment from the same publication.
The 10Weeks experiment attempts to approximate a

real-world, operational environment of a malware detec-
tion system exposed to attacks that change and adapt in
time. For that purpose, it employs periodic retraining and
evaluation. Training and evaluation datasets are assem-
bled in a sliding window fashion, i.e., for every week of
evaluation data, the classifier is trained on the previous
4 weeks of training data.
In order to follow the protocol of the 10Weeks experi-

ment as closely as possible, the two experimental datasets
were partitioned as follows. The time period in which
the files were collected was divided into 14 smaller, con-
secutive time periods. For PDF, every period was exactly
1 week long, for SWF 15 days, the last one 25 days.
Every time period was assigned a bucket, and every file
was put into one of the buckets, according to the time
period when it was first seen. Then, the sliding window
approach was applied, joining four consecutive buckets
into a training dataset and using the following bucket as
the corresponding evaluation dataset, resulting in 10 data
partitions for periodic retraining. Before every retraining,
i.e., every week for PDF, every 15 days for SWF, all four
steps of feature extraction (i.e., structure extraction, SPC,
feature selection, and vectorization) were applied to the
training dataset.
Thus, generated PDF file partitioning is identical to the

one used in [26], and the SWF dataset follows the same
design. The datasets are illustrated in Figs. 12, 13, and 14.
Every retraining event is labeled by the date of training,
i.e., the day that marks the beginning of data collection for
the evaluation period.
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Fig. 12 PDF dataset. Legend in Fig. 13
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Fig. 13 SWF-Normal dataset. Malicious training samples older
than four time periods are discarded

While the benign-malicious class ratio for PDF is
approximately equal throughout all time periods, the dis-
tribution of malicious and benign SWF files in time is
highly skewed, as visible in Figs. 13 and 14. As much
as 70 % of malicious SWF files in the SWF-Normal dataset
were collected before the first evaluation period, while less
than 10 % of benign SWF files occur before the fifth eval-
uation period. The result is a high class imbalance in most
training and evaluation datasets. In order to quantify the
effect of high class imbalance on detection performance,
we generated another data partitioning just for SWF data,
labeled SWF-KeepMal and illustrated in Fig. 14, in which
malicious training samples older than four periods are not
discarded. Instead, they are used for training in all sub-
sequent periods. By discarding old benign samples and
keeping malicious ones throughout the experiment, the
class imbalance in training datasets is greatly reduced.
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Fig. 14 SWF-KeepMal dataset. Malicious training samples are kept
indefinitely. Legend in Fig. 13
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Fig. 15 Results on PDF data. Performance of SL2013 with an SVM and
Random Forest classifier compared to Hidost with binary and
numerical features

4.3 Experimental results
Experimental results of different methods operating on
PDF and SWF data are illustrated in Figs. 15 and 16,
respectively. The methods are compared in four per-
formance indicators typical for classification tasks: true
(TPR) and false positive rate (FPR), accuracy, and
area under receiver operating characteristic (AUROC).
AUROC, similar to the area under the precision-recall
curve, is a good detection performance indicator for both
balanced and unbalanced datasets. Due to the stochastic
nature of the algorithm, mean values of 10 independent
runs are plotted for all Random Forest experiments. The
variance of these experiments was omitted from the plots
due to its very low value. SL2013 employs a support
vector machine (SVM) classifier, a deterministic algo-
rithm; therefore, its results are obtained from a single
experimental run.
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Fig. 16 Results on SWF data. Performance of Hidost with both binary
and numerical features on two SWF datasets, SWF-Normal, and
SWF-KeepMal

Figure 15 shows results for different variants of Hidost
and SL2013 on PDF data. Along with the accurate repro-
duction of SL2013, the same method is evaluated using
a Random Forest classifier instead of the SVM. Hidost is
shown with both binary and numerical features. These
two variants of Hidost are also shown in Fig. 16 on SWF
datasets SWF-Normal and SWF-KeepMal.

4.3.1 Classification performance
Figure 15 shows a direct comparison of Hidost to SL2013
on the PDF dataset. Random Forest variant of SL2013 was
introduced to enable the comparison of the two methods’
feature sets and classifiers independently. It can be seen
that SL2013 results, especially the true positive rate on
October 1, can be promptly improved by using a Random
Forest instead of an SVM on the same binary unconsoli-
dated features. On the other hand, the expected classifica-
tion performance indicated by AUROC is effectively equal
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for all methods, including the SVM. The maximum differ-
ence between any two methods in AUROC in a given time
period is a mere 0.006, and all methods have an AUROC
above 0.99 in every period. It can be concluded that Hidost
achieves the excellent classification performance of its
predecessor, SL2013, on PDF data.
Hidost’s performance on SWF data is not on par with

its success on PDF. Although the mean detection accu-
racy lies above 95 %, as seen in Fig. 16, accuracy is not a
meaningful performance indicator due to the large class
imbalance of 15:1 in favor of benign samples in the SWF
dataset. The class imbalance is even greater in the datasets
of individual time periods, shown in Figs. 13 and 14,
especially in the case of SWF-Normal.
The effect of class imbalance is clearly reflected in

the results. Applied on SWF-KeepMal, where malicious
training samples are accumulated over time, Hidost has
an overall much higher AUROC than on SWF-Normal,
where malware is discarded after four periods. The true
positive rate on SWF-KeepMal in the early stages, when
the classes are more balanced, is 5 to 10 % higher than
on SWF-Normal. Starting from December 29, after a

sharp increase of class imbalance, the advantage jumps
to around 20 %—a tremendous improvement. Access to
more malicious training data also increased the false pos-
itive rate, but the increase for the variant with numerical
features remained within bounds, except for the last time
period. These findings clearly show Hidost’s potential for
further improvement of detection performance, given a
greater availability of malicious SWF training data. How-
ever, as the SWF dataset only comprises 2,490 malicious
samples, it is impossible to accurately quantify the poten-
tial for improvement.

4.3.2 Comparison to antivirus engines
In order to get an estimate of Hidost’s detection perfor-
mance under day-to-day, realistic operational conditions,
it is necessary to put it into a wider perspective. A direct
comparison with antivirus engines, widely used malware
detectors most persons rely on for their security, provides
such a reality check. We compare the detectors in terms
of their true positive count, i.e., the number of malicious
samples they have correctly labeled, in the course of our
experiments. By definition of our ground truth, samples
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Fig. 17 Comparison of Hidost to antivirus engines on PDF (left) and SWF (right) data
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labeled malicious by at most four antivirus engines are fil-
tered out. Therefore, the antivirus engines do not have
false positives and cannot be compared in that sense.
Figure 17 shows the results achieved by Hidost (average

of 10 experimental runs) and antivirus engines deployed
by VirusTotal on both PDF and SWF files. Antivirus detec-
tion results were collected after the experiments were
over and not immediately after each new file was submit-
ted to VirusTotal. This provided antivirus engines with
the opportunity to update their detection mechanisms
in the meantime and correctly detect any file resubmit-
ted between its initial submission and the time when the
detection results were collected.
Nevertheless, Hidost ranks among the best overall. Its

PDF detection rate is unsurpassed, and even the SWF true
positive count, comparatively much worse than PDF “on
paper”, ranks among the best when compared to estab-
lished products under realistic conditions.

4.3.3 Effects of structural path consolidation
SPC is one of the main novelties in Hidost with respect to
SL2013; therefore, an evaluation of its effects on the per-
formance of the system is only fitting. Figure 15 demon-
strates that SPC does not affect detection performance,
neither positively nor negatively. Results of SL2013 (no
SPC) are virtually identical on PDF to those of Hidost
(with SPC) when the same Random Forest classifier is
utilized. Effects on SWF are negligible because its rigid
logical structure disallows user-defined paths, resulting in
minimal necessity for SPC.
However, SPC has a strong positive effect on feature

set drift. Figure 18 illustrates feature set drift in our
experiment with periodic retraining and periodic feature
selection on PDF data. It can be observed that in the first
half of our 10-week experiment, the feature set had been
expanded with up to 9 % of new features per week, while
in the second half, many features were found obsolete and
were removed from the feature set. Feature removal is
especially high in week 8, when almost a fifth of all fea-
tures from the previous week were deleted when SPC was
not used. On the other hand, when utilizing SPC, the over-
lap between feature sets of consecutive weeks was well
above 90 % throughout the entire experiment. Overall, the
introduction of SPC in Hidost reduced feature set drift by
around 50 %.

4.3.4 Effects of numerical features
Another novelty introduced in Hidost is the use of numer-
ical instead of binary features, reflecting the transition
from learning on pure structure to learning on structure
coupled with content. Here, we evaluate the impact of
numerical features on performance.
On PDF, the difference between binary and numerical

features is insignificant, as shown in Fig. 15. On the other

hand, the effect on SWF is largely positive. As shown in
Fig. 16, numerical consistently outperformed binary fea-
tures on both SWF datasets. They showed the highest
influence on false positive rate, reducing it by as much
as 50 %. TPR andAUROC also showed a significant overall
improvement.
The cause of the discrepancy between results for the

two file formats might lie in the nature of attacks against
them. Malicious PDF files often use features uncommon
in benign files, i.e., their structure is different, while mali-
cious SWF files mostly base their attacks on different val-
ues, i.e., content, at specific paths, although these paths are
also common among benign files. While binary features
suffice to describe logical structure, the added expressive
power of numerical features enables the description, and
consequently detection, of both structure- and content-
based attacks.

4.4 Reproduction of SL2013 results
Results of all performance evaluation experiments pub-
lished in SL2013 [26] were accurately reproduced using
the original RBF SVMwith C = 12 and γ = 0.0025. How-
ever, when attempting to reproduce the evasion robust-
ness evaluation experiment, we have discovered a flaw in
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the source code of the mimicry attack used against the
RBF SVM. Namely, instead of mimicking the most benign
sample in the benign set, the flaw caused the most benign
sample in the malicious set to be used as the mimicry
target. Thus, generated attack dataset was successfully
detected as such by the RBF SVM. Upon discovering this
flaw, we removed it and performed a corrected experi-
ment. This time, the attack was highly successful and the
accuracy fell to 50 %. We therefore retract the results of
the mimicry attack experiment published in [26] and see
the success of the corrected attack as evidence against the
robustness of RBF SVM in an adversarial environment.
Robustness guarantees for Random Forests remain a topic
for future research.

5 Discussion
The main novelty introduced by Hidost is its applicability
to multiple file formats, implemented and experimentally
confirmed on PDF and SWF. Its application to other hier-
archically structured file formats, e.g., XML, HTML, ODF,
OOXML, and SVG, requires the instrumentation of an
existing parser or the development of a new one, one for
each file format. Given the ability to parse a specific file
format, incorporating it into Hidost amounts to develop-
ing a structure extraction module. It is this step that has
to be specialized for every file format. In the following, we
discuss file structure and content extraction for various
hierarchically structured file formats.

XML and the related HTML and SVG have a very
clear and well-defined hierarchical structure that rep-
resents one of the cornerstones of these formats. For
example, Fig. 2 depicts an HTML file with the path
/html/body/p. Furthermore, there exists a number of
mature open-source parsers for XML files. We estimate
it to be very simple to implement the extraction of both
logical document structure and content from XML files.
Although based largely on XML, ODF and OOXML

generally combine multiple XML files into a ZIP archive
and therefore require some additional processing. Both
formats prescribe a set of files and directories in which
content, layout, and metadata are separately organized.
The formats differentiate between textual and graphical
content; textual being stored alongside logical structure
in XML files and graphical in separate files within the
directory hierarchy. We observe that the files and directo-
ries are themselves organized hierarchically and that the
remaining logical structure is described in XML files. The
following shows a simplified file and directory layout in an
ODF file:

.
|-- content.xml
|-- manifest.rdf
|-- META-INF
| \-- manifest.xml
|-- meta.xml
|-- mimetype

Fig. 19 Example meta.xml file
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|-- settings.xml
|-- styles.xml
\-- Thumbnails

\-- thumbnail.png

We consider the directory hierarchy to be the top level
of the logical structure. In it, the root directory of the ZIP
archive represents the root node of the entire structural
hierarchy. XML files can be viewed as sub-trees rooted
at the corresponding nodes in the file system hierarchy.
For example, ODF prescribes that the file meta.xml,
depicted in Fig. 19, resides within the root directory
and has a set of XML tags describing document meta-
data. Given this structure, the path to the dc:creator
tag would be:

/meta.xml/office:document-meta/office:meta
↪→ /dc:creator

By treating the directory hierarchy as the top level of the
logical structure and XML files as sub-trees beloning to
it, we ensure the complete and unambiguous extraction of
logical structure. Compared to PDF and SWF, we prepend
the file system path of a given XML file, relative to the root
of the ZIP archive, to structural paths extracted from the
file itself.
Multiple parsers for ODF and OOXML exist, of which

some are open-source. We believe that it would be possi-
ble, with moderate effort, to develop structure extraction
modules for both formats. Furthermore, in many cases,
completely benignOOXML files are used as containers for
embedding malicious SWF files and Hidost can already
handle them.
Structural path consolidation is the second and final

format-specific step in Hidost and requires some tuning.
We expect that different formats have different require-
ments for SPC and acknowledge the necessity for deeper
understanding of file formats for SPC rule development.
The variety of SPC rules for PDF versus SWF corroborates
this hypothesis.
Finally, Hidost’s applicability to a given file format does

not imply its effectiveness on it. For example, despite our
firm belief that extending Hidost to XML is straightfor-
ward, its effectiveness, measured in its ability to detect
malware disguised in XML files, can only be evaluated
experimentally. However, its use of both structure and
content for modeling makes it more likely to be successful.

6 Conclusions
In this paper we introduced Hidost, a machine-learning-
based malware detection system. It represents an exten-
sion of a previously published method, SL2013 [26].
Hidost is the first static machine-learning-based malware
detector designed to operate on multiple file types. It

accomplishes this by making a model of malicious and
benign samples based on their structure and content.
Evaluated on a real-world dataset in a realistic experi-

ment with periodic retraining spanning multiple months,
Hidost outperformed all antivirus engines deployed by
the website VirusTotal and detected the highest number
of malicious PDF files. It also ranked among the best on
SWF malware. Compared to its predecessor, SL2013, it
is much less vulnerable to malware hiding in obscured
parts of PDF files. Hidost also becamemore robust against
the continual adaptation of malware to updated defense
through periodic retraining. Finally, its greatly reduced
feature set dimensionality enables its efficient application
on very large datasets.
A logical next step for Hidost is its implementation and

evaluation on other hierarchically structured file formats.
Of particular significance would be an application to for-
mats used by Microsoft Office, as they are widely used for
recent targeted attacks. A conceptual design for this appli-
cation was proposed in this paper. Looking beyond, the
development of more advanced string handling methods
might prove indispensable to enable detection of malware
in formats whose logical structure and numerical content
do not provide enough discriminative power.
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