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Abstract

With increasing dependence on technology, the effects of space weather are becoming a
significant societal risk raising the need for real-time monitoring and forecasting. The
geomagnetic field being affected directly by solar events is an important proxy which
state is described by magnetic indices. These indices are based on magnetic observatory
measurements which encompass contributions of various sources. The main challenge
is thus the separation of these with the extraction of the storm-induced portion being
a complex and time consuming task. The geomagnetic baseline contains the non-storm
share - or the quiet sources - within magnetic field measurements and is a fundamental part
to be taken into account for the derivation of any such index. Its determination is ideally
done by a simple algorithm which captures quiet sources well, while being applicable to
an extensive network of magnetic observatories independent of the considered epoch.

This thesis is concerned with the exploration of novel methodologies that determine
such geomagnetic baselines suitable for near-real time applications. The horizontal compo-
nents of magnetic field measurements from observatories situated in mid- to low latitudes
are leveraged for this purpose. The first and main part of the present manuscript deals
with the introduction of a baseline approach based on conventional methodologies while
the second part investigates the utilisation of artificial intelligence.

In the main part, signal filtering techniques are leveraged to automatically determine
quiet variations of the geomagnetic field - the filter baseline. An exhaustive physical anal-
ysis taking into account measurements between 1991 and 2019 confirms that the most
important quiet sources in mid- and low-latitudes are accurately represented. These in-
clude the secular variation and the solar quiet current system. A significant finding is
that the intrinsic day-to-day variability of the solar quiet current system is accurately
contained within the filter baseline. However, the analysis also reveals that storm sig-
natures are present. To overcome this drawback, the filter baseline is replaced during
disturbances. First, an algorithm automatically detects disturbances with the aid of the
filtering approach and the residuals using the filter baseline. Second, during the identified
intervals a set of possible substitution baselines based on analytical models describing
quiet variations is deduced. Comparisons suggest that using variations from days prior
to disturbances hold suitable quiet variations. Using the substitution baseline during
identified disturbances on the filter baseline holds the final geomagnetic baseline which
shows good agreements with existing ones and thus can generally be used for mid- to
low-latitude observatories. As the algorithm only uses magnetic field measurements and
any of its steps is fully automated, it is adapted for operational near-real time applications
and the deployment in now- and forecasting environments.

In the second part, the application of artificial intelligence for the determination of
quiet variations is investigated. A random forest algorithm is used to identify important
drivers of these variations, followed by the use of Long-Short Term Memory neural net-
works to reproduce them. First results show promising possibilities for the derivation of
baselines with the support of AI and pave the way for future work.
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Résumé (FR)

Avec la dépendance croissante à la technologie, les effets de la météorologie spatiale deviennent
un risque sociétal non négligeable nécessitant surveillance en temps-réel et prévision. Le champ géo-
magnétique est directement affecté par les événements solaires. Son état est un indicateur important
décrit par les indices d’activité magnétique. Ces indices sont dérivés des mesures des observatoires
magnétiques or ces données englobent les contributions de diverses sources dont la proportion varie
selon l’activité. Le principal défi est donc la séparation entre la part induite par les orages magnétiques
et la ligne de base géomagnétique contenant les contributions des sources en périodes calmes. Cette
tâche complexe et longue demeure une étape fondamentale pour la dérivation d’un indice et est idéale-
ment réalisée par un algorithme simple. Celui-ci capture de façon satisfaisante les contributrions des
sources en périodes calmes sur les séries temporelles d’un réseau étendu d’observatoires magnétiques
quelle que soit l’époque.

Cette thèse porte sur l’exploration de nouvelles méthodologies de détermination de telles lignes de
base géomagnétiques adaptées à des applications en temps quasi réel.

La première et principale partie du présent manuscrit décrit une nouvelle méthode de détermina-
tion des lignes de base géomagnétiques en suivant des méthodologies conventionnelles, tandis que la
seconde partie étudie l’utilisation de l’intelligence artificielle. Dans la première partie, les techniques
de filtrage du signal sont utilisées sur les séries temporelles pour déterminer automatiquement les con-
tributions des sources en période calme - la ligne de base du filtre. Une analyse physique exhaustive
prenant en compte les mesures effectuées entre 1991 et 2019 confirme que les plus importantes de ces
contributions aux latitudes moyennes et basses sont représentées avec précision. Il s’agit notamment
de la variation séculaire, du champ crustal rémanent et du système de courant solaire calme. Un
résultat significatif est que la variabilité journalière intrinsèque du système de courant solaire calme
est correctement contenue dans la ligne de base du filtre. Cependant, l’analyse révèle également la
présence de signatures dues aux orages magnétiques. Tout d’abord, un algorithme détecte automa-
tiquement les périodes perturbées à l’aide de l’approche de filtrage et des valeurs de résidus obtenues
par soustraction de la ligne de base du filtre. Ensuite, pendant ces intervalles identifiés, un ensemble de
lignes de base de substitution possibles, basées sur des modèles analytiques décrivant les variations des
différentes sources en périodes calmes, est déduit. Les comparaisons suggèrent que l’utilisation simple
des variations des jours précédant les perturbations permet d’obtenir des lignes de base appropriées.
L’utilisation de cette ligne de base de substitution permet d’obtenir la ligne de base géomagnétique
finale. Cette dernière montre de bonnes concordances avec les lignes de base existantes et peut être
utilisée pour les observatoires situés à des latitudes moyennes ou basses. Comme l’algorithme n’utilise
aucune information a priori mais uniquement les mesures du champ magnétique et que chacune des
étapes est entièrement automatisée, la méthodologie est adaptée aux applications opérationnelles en
temps quasi réel et au déploiement pour des applications de surveillance et prévision.

Dans la seconde partie, l’application de l’intelligence artificielle pour la détermination des variations
en période calme est étudiée. Un algorithme de forêt aléatoire est utilisé pour identifier les facteurs et
paramètres importants de ces variations, suivi par l’utilisation de réseaux de neurones à mémoire à long
terme pour reproduire et retrouver ces paramètres. Les premiers résultats montrent des possibilités
prometteuses pour la dérivation de lignes de base avec le soutien de l’intelligence artificielle et ouvrent
la voie à de futurs travaux.
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Overview of the Thesis and Research
Question

Space weather refers to the dynamic conditions within the space environment that can
impact technological systems and human activities in space and on Earth. Determining
the impact of space weather events, like solar flares, coronal mass ejections and co-rotating
interaction regions, is thus necessary and becomes more and more important in near real-
time applications. Geomagnetic indices provide quantitative measures of the impact of
space weather phenomena on the geomagnetic field. One of the key elements of these
indices is the geomagnetic baseline that describes the complex, undisturbed geomagnetic
field and forms the central feature of this doctoral thesis. The present manuscript is
divided into four parts:

I. Introduction
In chapters 1 to 3 the theoretical background needed to adequately follow this thesis
is presented. The opening chapter is dedicated to the theory of basic space plasma
physics as it is the primary theory governing space weather. In the second chapter,
an overview of space weather is given, with focus on the near-Earth space environ-
ment and the geomagnetic field. Geomagnetic indices are introduced in Chapter 3
and finally, geomagnetic baselines are discussed which leads to the motivation of the
PhD thesis topic at hand.

II. Baseline Derivation
Chapter 4 is dedicated to the technical aspects of this work. We start by outlin-
ing the employed data set and applied methodology that allows us to introduce
an automatic baseline derivation method referred to as the filter baseline. This is
followed by a detailed analysis to which extent the filter baseline is able to resemble
the undisturbed geomagnetic field. A large part of the work presented in chap-
ters 4 and 5 has been published in Haberle, Marchaudon, Chambodut, and
Blelly (2022) which can be found in the annex. Chapter 6 covers the treatment
of undesirable storm signatures within the baseline. Eventually, the final baseline is
compared with existing ones.

III. Leveraging Artificial Intelligence
Artificial intelligence has led to promising results in a wide range of applications
and a short introduction of it is given in Chapter 7. In Chapter 8 we explore the
application of the random forest method to determine the most important drivers
of quiet variations of the geomagnetic field, which is followed by the use of a Long-
Short Term Memory neural network to reproduce these variations in Chapter 9.
The results are discussed in Chapter 10.

IV. Conclusions and Perspective
Last but not least, the conclusion and perspective of the presented work is outlined.

5
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As such, this thesis addresses two research questions. The first one is concerned with
the introduction of a new methodology to derive geomagnetic baselines for operational
(near-)real time environments. The physical research question formulates as:

1. Is the derived baseline reflecting the quiet variations of the geomagnetic field?

The second one is concerned with the applicability of artificial intelligence for describing
the undisturbed geomagnetic field. The physical research question formulates as:

2. To which extend can AI support the determination of the baseline with respect to
conventional methods?



Part I

Introduction
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Chapter 1

Basic Space Plasma Physics

The fundamental principles of physics that govern and give rise to the phenomena studied
in this thesis are described within the framework of plasma physics. Plasma is the most
abundant visible matter in the universe. Plasma physics, and especially space plasma
physics, enables the understanding and description of many phenomena, observed in our
solar system. It continues to enhance our understanding of the interaction between the Sun
and Earth, including the solar atmosphere, the constant particle stream from the Sun - the
solar wind, and plasma structures accompanied by complex current systems in the near-
Earth space environment. Let alone, the field of plasma physics significantly contributed
to the comprehension of phenomena and effects relating to space weather. In the following
a brief introduction outlining the main results of space plasma physics is given that serves
as a background for space weather phenomena. The objective of this thesis is not to
study space plasma physics but to leverage its applications. Therefore, important and
relevant concepts from plasma physics are presented to the scope as they are useful for a
thorough understanding of succeeding chapters. For further and more elaborate treatment
of the subject the interested reader is referred to books like Baumjohann and Treumann
(2012) for a general overview with basic mathematical treatment and Cravens (1997) for
a thorough mathematical treatment of solar system plasma.

1.1 Definition of a plasma
Plasma is an ionised gas of charged particles and is the most abundant state of matter in
the universe with more than 99 % of known baryonic matter being in the plasma state.
An ideal plasma is quasi-neutral, i.e. it has approximately the same numbers of positive
and negative charges considering large enough scales. The characteristic Debye length λD

describes the maximum distance at which charged particles are influenced by the electric
field of other particles within a plasma. It depends upon the plasma temperature Te and
plasma density ne:

λD =
(

ϵ0kBTe

nee2

)
, (1.1)

whereby it is assumed that ions and electrons have similar temperatures and densities,
i.e.: Te ≈ Ti and ne ≈ ni. ϵ0 is the free space permittivity, kB the Boltzmann constant and
e the electron charge. Quasi-neutrality is actively aimed for by plasma and is guaranteed
in systems which physical dimensions L fulfills

λD ≪ L . (1.2)

Collectively, the charged particles arrange themselves to mitigate the impact of external
electrostatic fields. For this Debye shielding to occur, sufficiently enough charged particles

9



10 CHAPTER 1. BASIC SPACE PLASMA PHYSICS

need to be present within a Debye sphere of radius λD which is satisfied for plasma
parameters Λ with

Λ = neλ
3
D ≫ 1 . (1.3)

In their efforts to maintain quasi-neutrality driven by the Coloumb force, the fully ionised
plasma is characterised by its typical oscillation frequency. The electron plasma frequency
ωpe is defined as

ωpe =
√

nee2

meϵ0
, (1.4)

with me being the electron mass. In order to guarantee that the electrons are not affected
by collisions with neutrals, the time between two electron-neutral collisions τn needs to
be sufficiently larger than the plasma frequency, i.e.

ωpe

τn

≫ 1 . (1.5)

An ideal plasma satisfies the three plasma criteria (1.2), (1.3) and (1.5). Examples of
such plasma are important drivers of phenomena studied in this thesis, like the solar
wind which is a stream of charged particles expelled from the the Sun’s atmosphere or
the ring current which is a large-scale current flow that encircles Earth at around 3 to 8
Earth-radii (RE) earth radii RE in the equatorial plane (Daglis, Thorne, Baumjohann, &
Orsini, 1999) which we will study later on in detail.

1.2 Single Particle Motion
Due to their electrically charged nature, the dynamics of plasmas are governed by their
interaction with self-induced and external magnetic and electric fields. Assuming that
particles do not directly interact with each other and their generated fields are much
weaker than the external magnetic fields, their motions can be described by the single
particle approach and, even though rarely directly applicable, provide a great insight into
a plasma’s dynamics.

The most important forces acting on a plasma are the Coulomb force

FC = qE , (1.6)

when the charged particles are at rest and the Lorentz force,

FL = q (v × B) (1.7)

when particles move as current elements with velocity v in a magnetic field B. Such that,
the equation of motion for a particle can be written as

m
dv
dt

= q (E + v × B) . (1.8)

In the absence of an electric field, the E term in (1.8) is dropped leading to a gyration
motion of the particle with gyro- or cyclotron frequency

ωg = qB

m
, (1.9)
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which results in opposite directions for electrons and protons. The gyro-radius writes as

rg = mv⊥

qB
, (1.10)

whereby v⊥ is the constant speed perpendicular to B and B is the magnitude of the
homogenous magnetic field. Note that the mass of the particle is in the numerator and
thus the gyro-radius of the electron is significantly smaller than that of the ions. Such a
particle describes a helicoidal trajectory, i.e. a circular orbit around the so-called guiding
centre for v⊥ and a helix when there is a velocity v∥ parallel to the magnetic field lines.
The pitch-angle of the helix is defined as

α = arctan
(

v⊥

v∥

)
. (1.11)

In the presence of an electric field E, the gyro-motion is joined by a drift motion of the
guiding center as it is accelerated when it moves in the direction of E increasing its gyro-
radius, and decelerated otherwise, decreasing the gyro-radius. This motion is caused by
the E × B drift

vE = E × B
B

. (1.12)

The direction of this drift does not depend upon the charge and thus no current is created.
Further motions are induced when the magnetic field B is not homogenous. In fact,

often B has a gradient or is curved. An additional perpendicular gradient of the magnetic
field ∇B results in a drift perpendicular to the magnetic field and the gradient due to the
induced changing of the gyro-radius (1.10) as

v∇ = mv2
⊥

2qB3 (B × ∇B) . (1.13)

It is accompanied by the magnetic moment µ which is the ratio between perpendicular
particle energy and magnetic field defined as

µ = mv2
⊥

2B
. (1.14)

When the magnetic field is curved the particle experiences a centrifugal force due to their
parallel verocity v∥, leading to the curvature drift around the local radius of the curvature
Rc as

vR =
mv2

∥

q

Rc × B
R2

cB2 . (1.15)

Both the gradient drift and curvature drift are in opposite directions for electrons and ions.
When the magnetic field lines are curved and in the additional presence of a perpendicular
gradient, they induce a total magnetic drift vB = vR + v∇ which is the main mechanism
behind an important current system in the near-Earth environment: the ring current,
which we will discuss in detail later on.

Together with the magnetic moment in (1.14), the magnetic flux Φµ through the
surface encircled by a gyrating particle

Φµ = 2πm

q2 µ = const (1.16)



12 CHAPTER 1. BASIC SPACE PLASMA PHYSICS

are adiabatic invariants meaning that they vary slowly in comparison to their typical
particle motion. Considering a particle that moves in an inhomogeneous magnetic field,
equations (1.11) and (1.14) relate the pitch angle α to the magnetic field strength with
the magnetic moment as

sin2 α2

sin2 α1
= B2

B1
. (1.17)

Is the magnetic field also converging into stronger magnetic fields, the pitch angle of the
particle will increase and at the point where it reaches α = 90◦ it will be reflected at the
mirror point. If the magnetic field configuration is that of a dipole, i.e. the field increases
at the poles, two mirror points one in the magnetic’s north pole and one in the south pole
will cause particles to become trapped. This is a feature of the Earth’s internal magnetic
field and trapped particles partially make up the radiation belts and the ring current,
which we will discuss later.

1.3 Collisions and Conductivity
When single particles move as governed by the introduced equations, they eventually also
interact with other particles via binary collisions. When particles within a plasma have
enough space to move around such that collisions occur rarely when compared to other
relevant variations of the fields, the plasma is considered collisionless. However, when
collisions occur frequently enough, particle interactions become important.

In fully ionised plasmas, the charged particles interact through electric Coulomb colli-
sions with Coulomb cross-section σC . This cross-section is significantly enlarged through
the particle’s Coloumb field leading to frequent small angle deflections. When a much
faster electron approaches an ion, that can be assumed at rest, and using the plasma
parameter as introduced in (1.3), the collision frequency derives to

νei ≈ ωpe

16π

ln Λ
Λ . (1.18)

The associated mean free path can be defined as

λe = ⟨v⟩
νei

≈ 64πne

ω4
pe ln Λ

(
kBTe

me

)2

, (1.19)

and due to the electron temperature Te in the nominator, λe will be shorter in cold and
longer in hot plasmas. Using the plasma parameter (1.3) to rewrite (1.19) holds

λe

λD

≈ 16πΛ
ln Λ ≫ 1 . (1.20)

This implies that the mean-free path in plasmas is much larger than the Debye sphere, such
that an electron passes by many Debye-spheres of ions before colliding with one. Fully
ionised plasma can be considered collisionless when the mean-free path is much larger
than the scale of the plasma system and collisional frequencies are much smaller than
the plasma frequencies in the considered regions. This is the case for most geophysical
plasmas.

In partially ionised plasmas, the main collision occurs between charged particles and
neutrals while Coulomb collisions play a secondary role and can often be neglected. This
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is the case for example in the upper part of the terrestrial atmosphere, the so-called
ionosphere, where collisions with ionised and neutral particles occur frequently due to
increased neutral and plasma densities. Neutral-electron collisions can be simplified in a
first approximation as head-on collisions with the neutral collision frequency νn, i.e. the
number of collisions per second,

νn = nnσn⟨v⟩ , (1.21)

with cross-section of an atom or molecule nnσn, whereby nn is the neutral particle density
and σn = πd2

0 is the molecular cross-section, and average velocity ⟨v⟩. The length a
charged particle travelled before encountering a collision with neutrals is called the mean
free path

λn = ⟨v⟩
νn

= (nnσn)−1 . (1.22)

Averages are used for the quantities to account for the thermal motion. Equation (1.22)
is a first approximative description for neutral-electron collisions where electrons are as-
sumed to be much smaller hard spheres than neutrals. As ions and neutrals may be
similar in mass and momentum, their interaction becomes more complex. The interested
reader finds further details in dedicated books, like Schunk and Nagy (2009).

For collisional plasma, the equation of motion (1.8) is enlarged with a collisional term
that describes the momentum lost by charged particles to the bulk of plasma or to the
neutrals (in case of partially ionised plasma)

m
dv
dt

= q (E + v × B) − mνc(v − u) , (1.23)

whereby νC is the collision frequency and u is the bulk velocity.
In an unmagnetised plasma, when electrons move and their collision partners (ions

and, if not fully ionised, neutrals) can be assumed to be at rest, they carry a current
j = −eneve, generating an electric field E = −mevc

e
ve resulting in Ohm’s law,

E = η j = meνc

nee2 j , (1.24)

with η being the plasma resistivity that depends upon the electron density and the collision
frequency.

When the plasma is magnetised, the plasma may move across magnetic field lines,
such that Ohm’s law in (1.24) derives as

j = σ0 (E + v × B) = nee
2

meνc

(E + v × B) , (1.25)

with the scalar plasma conductivity σ0. This is valid in fully ionised plasmas with ex-
tremely low collision frequencies and the conductivity may be approximated as infinite.

However, in a partially ionised and magnetized plasma where collisions are abundant as
is the case in the terrestrial ionosphere, the scalar becomes a finite anisotropic conductivity
tensor. Assuming a magnetized plasma at steady state with electrons moving at velocity
ve and ions and neutrals at rest, the equation of motion (1.23) writes as

E + ve × B = −mevc

e
ve (1.26)
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Using the plasma conductivity σ0 as defined in (1.25) and using j = −eneve to express ve

we get another form of Ohm’s law:

j = σ0E − σ0

nee
j × B . (1.27)

Assuming a magnetic field along the z−axis, i.e. B = Bêz, the anisotropic conductiv-
ity tensor σ can be written as

j = σ E =

σP −σH 0
σH σP 0
0 0 σ||

E . (1.28)

The tensor elements are the following:

• The Pedersen conductivity σP determines the Pedersen currents in the direction E⊥
transverse to the magnetic field and writes as

σP = σ0
ν2

c

ν2
c + ω2

ge

. (1.29)

• The Hall conductivity σH governs the Hall currents in the direction perpendicular
to electric and magnetic fields −E × B and writes as

σH = σ0
ωgeνc

ν2
c + ω2

ge

. (1.30)

• And finally, the parallel conductivity σ∥ governs the magnetic field-aligned currents
that are driven by the parallel electric component E∥ and is written as

σ∥ = σ0 = nee
2

meνc

. (1.31)

The Hall conductivity σH and the Pedersen conductivity σP are perpendicular to the
magnetic field. σ∥ is the conductivity that arises on the parallel direction of the magnetic
field and is equal to the plasma conductivity in the unmagnetised case. Also note that
Pedersen and Hall conductivities depend upon the ratio of the collision frequency and the
gyrofrequency ωge. These effects become especially interesting in the ionosphere of Earth
where the conductivities give rise to the dynamo region and relevant current systems for
this work which are discussed later in chapter 2.3.1.

1.4 Magnetohydrodynamic Description of a Plasma
Often the individual particle motions are too detailed and the main interest lays on the
plasma’s bulk properties. For this purpose the plasma can be described as a fluid with
macroscopic variables that characterise the bulk movement, such as the bulk velocity v,
density ρ, pressure p and average temperature T . Due to the electrically charged nature
of the plasma, the fluid is subject to the presence of external and internal magnetic fields.
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This subfield of plasma physics is called Magnetohydrodynamics (MHD). The Maxwell
equations are the underlying governing equations

∇ · E = ρc

ϵ0
(1.32)

∇ · B = 0 (1.33)

∇ × E = −δB
δt

(1.34)

∇ × B = µ0j + µ0ϵ0
δE
δt

(1.35)

Using Ohm’s generalised law (1.25) in Faraday’s law (1.34) and together with Ampere’s
law (1.35), ∇ · B = 0 and dropping δE/δt yields the induction equation

δB
δt

= η∇2B
µ0︸ ︷︷ ︸

Diffusion

+
Convection︷ ︸︸ ︷

∇ × (v × B) . (1.36)

which describes the transport of magnetic field lines and plasma. Whether the plasma
is governed by magnetic diffusion or by the convection of the bulk is determined by the
Reynolds number

R = µ0vL

η
, (1.37)

with L being the characteristic length. If R ≪ 1 diffusion prevails and if R ≫ 1 convection
prevails.

For ideal MHD the following assumptions hold: 1) the plasma is a single fluid species
such that electrons and ions are indistinguishable, 2) plasma is non-relativistic, i.e. the
right term in (1.35) is zero and 3) the plasma is quasi-neutral. In an ideal collisionless
plasma, when conductivity becomes infinite such that resistivity is zero, diffusion becomes
negligible and convection is the only remaining term. This results in Ohm’s law as

E + v × B = 0 . (1.38)

and is themed the frozen-in flux theorem. The meaning of (1.38) is that the magnetic
field lines and the plasma move together and are inseparable. As convection prevails

δB
δt

= ∇ × (v × B) (1.39)

holds.
For length-scales that are too small to guarantee quasi-neutrality, ideal MHD breaks

down. This is the requisite for an important process: magnetic reconnection (see e.g.
Hesse and Cassak (2020) for a comprehensive review). Its basic principle is illustrated in
figure 1.1. Reconnection occurs when opposite-directed magnetic field lines get sufficiently
close. At the X line (or point), indicated by the white square, the magnetic field line
topology changes. In the illustration, the leftward and rightward magnetic field lines merge
to create a new closed magnetic field line on the left and the right (however opening of
field lines is also possible). The creation of new field lines is accompanied by high-velocity
plasma jets as plasma is heated and accelerated. Magnetic reconnection is a very efficient,
short-lived process to transform magnetic energy to kinetic energy. It is an important
process that allows energy from the solar wind to enter the near-Earth environment and
leads to substorms and geomagnetic storms, which is elaborated in the following.
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Figure 1.1: Conceptual principle of magnetic reconnection. Frozen-in plasma on opposite-
directed field lines is convected into the white middle square where reconnection occurs,
leading to newly created field lines and jets of heated and accelerated plasma. Taken from
Hesse and Cassak (2020).



Chapter 2

Space Weather and the Geomagnetic
Field

During the past century, technology and digitalisation have accelerated human progress
which led to an increasing amount of our culture existing in digital form (Hodson, 2018).
The digital revolution has brought humanity access to a wide range of new possibilities
including global communication and navigation, as well as to a vast online database of
knowledge. All of which is powered by electricity and thus demands for the expansion
and development of power grid infrastructures all around the globe. The sky being not
the limit, we have started populating our near-Earth space environment with technology
to support our infrastructure and to explore the solar system in order to gain a better
understanding of the world we live in. We have become dependent on these infrastructures
and, consequently, have also learned about the threats they face. Especially in the past
few decades the term Space Weather has emerged in order to describe the effects due to
the interaction between our Sun and Earth on technological and human well-being. Space
Weather is defined by the US National Science Foundation as (Wright et al., 1997):

”Conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and
thermosphere that can influence the performance and reliability of space-borne and

ground-based technological systems and can endanger human life or health”.

As humanity expands and fosters its technological reaches, Space Weather is able to
impact a wide variety of areas. Numerous socio-economical consequences are well doc-
umented in the literature (see e.g. Koskinen et al. (2001); Desmaris (2015); Wolfert,
Ge, Verdouw, and Bogaardt (2017); Eastwood, Nakamura, Turc, Mejnertsen, and Hesse
(2017)) including the following selected examples:

• Scientific Payload on Spacecraft Missions
During space-missions, satellites and their payload built from sensible electronics have
to withstand the harsh environment of space while performing their tasks. High en-
ergetic particles are able to penetrate the outer layers of satellites and harm fragile
components by corrupting data or, in the worst case, destroying essential electrical
components and instruments.

• Communication and Positioning Systems
The ionosphere modulates the propagation of radio frequency signals. Variable condi-
tions in the electron density due to increased solar activity can lead to loss of signals,
affecting crucial communication and positioning systems. This can lead, for exam-
ple, to significant positioning errors in precision agriculture and decreased directional
drilling accuracy.

17
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• Power Grid Damage
Magnetospheric and ionospheric currents are enhanced during geomagnetic distur-
bances and lead to rapid and intense magnetic variations. Accompanied by geoelectric
fields, they are responsible for geomagnetically induced currents (GIC) in electrical
systems. GICs can lead to damages and malfunctioning on the power grid causing
major power outages on wide-area scales.

Another more recent and comprehensive overview of space weather effects can be found in
Coster, Erickson, Lanzerotti, Zhang, and Paxton (2021). Especially, strong space weather
events called solar storms pose a significant risk. One of the first documented extreme
events is the Carrington event that occurred in 1859. Richard Carrington observed intense
white light flares above a large sunspot group on the surface of the Sun. Only 18 hours
later, strong aurora were visible in the global night sky including mid- and low-latitudes.
Back then, communication relied on telegraphs, connecting endpoints via kilometer long
electrical cables. On a global scale, while some telegraph operators reported loss of mes-
saging services, others had the possibility to send messages without active power supply.
This was at a time, when technology was still in its early stages. A recent study on another
intense event, the March 1940 Superstorm by Love et al. (2023), summarises the impacts
from the unusually rapid geomagnetic field variations as ”severe for induced geoelectric
fields on communication and power grid infrastructure at that time”.

Even though, no comparable intense event has happened in the near past, there are
many recordings of space weather impacts that demonstrate its present threat. In 2003,
the so-called Halloween events were a series of storms accompanied by beautiful auroral
displays, but led to major power outages in Lapland (Pulkkinen, Lindahl, Viljanen, &
Pirjola, 2005). A recent example showed that not only very intense storms have the
capability to disturb our operations: In 2022, a batch of communication satellites was
launched but failed to reach orbit due to insufficient fuel reserves. The cause for which
was a moderate solar storm that most probably led to just enough heating and thus
expansion of the neutral atmosphere such that the satellite drag was stronger than the
maximum thrust of their engines (Fang et al., 2022). Another interesting study considers
the possible consequences of space weather conditions during the tragic case of the Titanic,
affecting navigation and communication systems (Zinkova, 2020). These are but a few
examples of the impacts of space weather illustrating its importance and the need for
a better understanding and improved forecasting capabilities. As our society developed
into a more technology-dependent civilisation, a global disruption in communication and
infrastructure poses a substantial global threat. The discipline of space weather is devoted
to the origin of such effects and deals with the investigation of phenomena arising on the
Sun and their interactions and effects on Earth and in Earth’s near-space environment.
By nature it comprises a broad variety of domains, from heliophysics to geophysics. An
overview of the main actors and related phenomena of space weather is presented in figure
2.1.
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Figure 2.1: An overview of Space Weather depicting the main actors and associated
phenomena, the Sun 1 - 3 and the Earth 5 - 8 , and their interconnection via the
solar wind 4 . Image courtesy from ESA.

1 The Sun is our nearest star and is the main driver and energy provider for space
weather phenomena

2 Solar Flares are strong bursts of electromagnetic energy that originate on the Sun’s
surface

3 Coronal Mass Ejections (CMEs) are large scale eruptions of solar material that
are ejected into space

4 The Solar Wind is a constant stream of particles from the Sun’s atmosphere car-
rying the solar magnetic field with it which is the cause for the Earth’s particularly
shaped magnetic environment

5 The Magnetosphere is formed as the solar wind compresses Earth’s internal mag-
netic field on the day-side and elongates it on the night-side

6 Substorms are smaller-scale disturbances of the geomagnetic field which conse-
quences are mainly confined to polar regions and are associated with auroral dis-
plays

7 The Ionosphere is a layer of ionised particles around Earth which coexists with
Earth’s neutral atmosphere, called the thermosphere

8 Geomagnetic Storms, accompanied by substorms, induce strong perturbations in
the geomagnetic field which have consequences on a global scale, especially in the
equatorial and radiation belt regions
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The actors and associated phenomena related to space weather can mainly be described
by plasma physics as presented in the previous chapter 1. In the following, each actor
is presented in more detail, starting with the driver, the Sun. The magnetosphere as a
large-scale structure is introduced and important current systems that support its shape
are outlined. This is followed by a detailed discussion of the ionosphere with focus on
mid-latitudes, given that its associated phenomena hold significant relevance for this
work. Thereafter the geomagnetic field and its sources are presented. Last but not
least, important measures in the field of space weather are introduced: magnetic activity
indices. These condense geomagnetic information into a single (or sets of) indicator(s)
that characterise the state of the geomagnetic field and act as important space weather
proxies. The final chapter in the introduction covers geomagnetic baselines that are needed
to determine the net effect of external drivers on the geomagnetic field, which represents
the core of the presented work.

2.1 Our Sun
In astrophysics, the Sun, as illustrated in figure 2.2, is classified as a G-class main sequence
star with luminosity class V (Gray et al., 2021), implying that it is an average star from
the main sequence. It has a radius of around 700 000 km and a mass of 2 × 1030 kg.
Its main constituent is Hydrogen, followed by around one fourth of Helium and traces
of other, heavier elements. The immense power of the Sun is produced in its hot and
high pressure core, burning Hydrogen to Helium. With helioseismology, it is possible
to infer that the Sun is build up by a radiative zone, encapsulated within a convective
zone. The transition area between those two, the tachocline, is believed to harbour the
solar dynamo that generates the Sun’s complex magnetic field which underlying processes
are still actively debated (Charbonneau, 2020). The magnetic field of the Sun was first
discovered by Hale (1908) after the discovery of the Zeeman effect.

The convective interior ot the Sun is cooled by radiating the largest portion of its
total radiative output of 4 × 1026 W from its surface into space. The photosphere, the
apparent visible surface of the Sun, is a thin layer of a few hundreds of kilometers at the
base of the solar atmosphere with temperatures of around 5800 K. At a closer look, small
scale structures are visible: the granulation. So-called granules are convection cells that
origin in the lower convective zone. Hot plasma raises, to cool off through radiation and
then sinks down again. Occasionally, darker regions are observable on the photosphere.
These sunspots are regions with lower temperatures and thus appear darker, the umbra,
surrounded by slightly brighter regions, the penumbra. Sunspots are characterised by
strong magnetic fields and usually occur in pairs of opposing field directions. Solar flares
are sudden and intense releases of electromagnetic energies that are associated with rapid
reconfigurations of the Sun’s magnetic field. Prominences are large and bright structures
that emerge from sunspots with opposite polarity and extend from the Sun’s surface out
into its atmosphere and are often described as giant loops of plasma. On top of the
photosphere, the Sun’s atmosphere is distinguished into three layers. The chromosphere
is about 2000 km high and can be observed in the UV spectrum. The transition region is
a thin layer where the fastest temperature raise occurs: from several tens of thousands of
K to a few million K that are found in the solar corona. Processes explaining such a steep
temperature rise are still under hot debate (Cranmer et al., 2015). The Sun is too bright to
observe its much fainter corona. During solar eclipses or with specialised instrumentation,
so-called corona-graphs that occult the surface of the Sun, coronal features are made



2.1. OUR SUN 21

Figure 2.2: A scientifically informed artistic impression of the Sun and its components.
Designed and provided by Wikimedia Commons User:Kelvin13

visible. These structures are made of plasma that travels on open and closed magnetic
field lines. Coronal holes are surface regions with open magnetic fields on which plasma
flows out into interplanetary space. Due to the outflow these regions are marked by less
dense plasma and thus are darker.

As our closest star, the Sun provides our planet with life-sustaining energy through
electromagnetic radiation. The solar spectrum can be described by a black-body spectrum
of ∼5800 K with additional contributions in the extreme ultra-violet (EUV) and X-ray
regime originating in its chromosphere and corona. This contribution in the high energy
part of the spectrum is the major source of heating and ionisation of the higher parts of
Earth’s atmosphere, creating the ionosphere which is discussed in detail in chapter 2.3.
Additionally, the Sun’s reach stretches far beyond the orbit of Pluto, creating a cavity
within the interstellar space, called the Heliosphere, protecting us from high energetic
galactic cosmic rays. This stretching of the Sun’s influence is due to the extension of its
atmosphere from the solar corona into space by what is known as the solar wind.

2.1.1 Solar Wind
Postulated in the early twentieth century by Birkeland, the first in-situ observations, and
thus confirmation of the solar wind as a particle stream coming from the Sun, were con-
ducted by the Mariner 2 mission (Neugebauer & Snyder, 1966). The solar wind is a fully
ionised plasma which main constituents are protons H+, alphas H2+

e and electrons. Clas-
sically, two types of solar wind can be distinguished: The slow solar wind originates mainly
from equatorial latitudes of the Sun, having average velocities of ∼300 to 400 km s−1 with
densities of ∼7 cm−3. The fast solar wind has velocities of up to 500 to 800 km s−1 while
having lower densities with ∼2.5 cm−3 and originates mainly from coronal holes in the
Sun’s polar regions. Here one foot of the magnetic field lines is attached to the Sun and
the other one is stretched out into interplanetary space on which the plasma is accelerated
to supersonic speeds into the heliosphere.

In MHD, the solar wind can be described as a magnetised fluid for which the frozen-in



22 CHAPTER 2. SPACE WEATHER AND THE GEOMAGNETIC FIELD

theorem (1.38) applies. This important result leads to the creation of the interplanetary
magnetic field (IMF) as plasma being tied into the solar magnetic field is flowing into
space. As the Sun rotates and plasma is expelled, together with the frozen-in magnetic
field, an archimedian spiral structure is created, the so-called Parker Spiral (Parker, 1958).
This topology leads to a big scale structure magnetic field that propagates through inter-

Figure 2.3: The Parker Spiral illustrated by the modelled solar wind velocity in the
equatorial plane in top-down view as derived from HelioCast (Réville et al., 2023). The
black circle indicates a distance of 1 AU and the white inner one the position of the Sun.
The axes are given with respect to Sun’s radius r⊙.

planetary space interacting with the solar system’s bodies, especially the Earth’s magnetic
field. The Parker spiral in the equatorial plane (as looking from top down) is depicted in
figure 2.3 by using the solar wind velocity from the model HelioCast (Réville et al., 2023).
The black circle indicates a distance of one astronomical unit (AU), whereby 1 AU equals
approximately 150 million km representing the average Sun-Earth distance.

2.1.2 Variability of the Sun
Driven by its internal dynamo, the Sun’s activity is modulated during its typical 11-
year Solar Cycle (SC). This cycle has already been recognised as early as 1848 due to
its manifestation in the number of sunspots SN with each cycle being individual with
its own behaviour (Hathaway, 2015). However, general patterns can be deduced leading
to four phases: the solar cycle minimum and maximum together with increasing and
decreasing phases. During solar minimum, the quiet Sun has a dipole-like magnetic field
with generally low magnetic activity and coronal holes that tend to occur mainly on the
poles. The number of sunspots is at its minimum. While at solar maximum, magnetic
activity is at its peak, leading to a complex magnetic field topology (McComas et al.,
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2003). The corona is highly structured and coronal holes occur more frequently, now also
around the equator, increasing the occurrences of transient events like CMEs and flares.
The sunspot numbers are at their peak. Currently we are in the increasing phase of solar
cycle 25 (SC25). Not only the corpuscular emission is affected by the solar cycle, but also
the electromagnetic radiation. UV and X-ray fluxes are significantly enhanced during
solar maximum compared to minimum. Especially radio emissions that are recordable
at Earth’s surface are good proxies for the solar cycle and solar activity. The 10.7 cm
solar radio flux, F10.7, has been reported and used since the first half of the twentieth
century for measuring solar activity levels. It is expressed in solar flux units (sfu), with
1 sfu = 10 × 10−22 W m−2 Hz−1. A detailed review of the measurements and derivation of
the F10.7 index is given in Tapping (2013). Figure 2.4 shows the sunspot number SN and
the F10.7 index. Increased solar activity from transient events are readily distinguishable
in F10.7.

Another important property of the Sun is its rotation period of 27 days which is
connected to the recurrence of coronal holes and with associated patterns in the solar
wind.
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Figure 2.4: The daily and monthly averaged sunspot number SN and F10.7 index in sfu
since 1947. The data is taken from SILSO World Data Center (2023) and from LISIRD
(LASP Interactive Solar Irradiance Datacenter)

On smaller timescales, transients often manifest themselves as sporadic and violent
events. Solar flares as sudden locally confined brightening on the photosphere that can
extend into the corona and increase the electromagnetic radiation in all wavelengths sig-
nificantly. They are classified according to their soft X-ray energy flux in specific spectral
bands: A, B, C, M, X, with X being the most intense and each class increases the inten-
sity by a factor of 10 (Hudson, 2011). They are also clearly observable in F10.7. Coronal
Mass Ejections (CMEs) are eruptive events in the lower corona that can be associated to
magnetic reconfigurations of prominences. They blast high amounts of charged particles
with speeds of up to 2000 km s−1 into interplanetary space, increasing IMF and solar wind
parameters dramatically. When a CME expands into interplanetary space, and thus also
when it arrives at Earth, it is commonly referred to as an Interplanetary Coronal Mass
Ejection (ICME). CME occurrence rates are lower during solar minimum and higher dur-
ing solar maximum, remaining high during the descending phase. Co-rotating interaction
regions (CIRs) form when the fast solar wind catches up with the slower wind, creating



24 CHAPTER 2. SPACE WEATHER AND THE GEOMAGNETIC FIELD

high compression regions. These large-scale structures of transient solar events, when
reaching Earth, may be highly geoeffective and consequently produce major geomagnetic
storms (Denton et al., 2006; Kilpua, Balogh, von Steiger, & Liu, 2017).

2.2 The Magnetosphere
The solar wind with the frozen-in IMF encounters the Earth’s magnetic field as an obstacle
giving rise to a complex configuration of plasmas and magnetic fields that make up the
so-called magnetosphere (Vasyliunas, 1983). As the plasma is slowed down upstream of
Earth, a bow shock is formed, converting kinetic into thermal energy. This leads to the
plasma having higher and more variable temperature, pressure and magnetic field strength
with subsonic speeds in the magneto-sheath, situated just behind the bow shock. The
magnetopause marks the boundary layer at which the external solar wind pressure is
balanced with the internal magnetic pressure. In ram-direction, i.e. on the dayside, the
Earth’s magnetic field lines are compressed, while on the night-side the solar wind flow
elongates field lines forming the magnetotail. The stand-off distance or subsolar point of
the magnetopause has a typical value of 10 RE with 1 RE ≈ 6371 km. This distance is
highly variable as a function of solar wind properties. The magnetotail on the night-side
is estimated to extend out up to 5000 RE (Cowley, 1991). There is a reversal in direction
of the magnetic field lines between the northern and southern lobes of the tail which are
separated by the plasma sheet. The polar cusps are regions around Earth’s magnetic poles
that map into the outer magnetospheric regions close to the magnetopause. When they
connect with the IMF, solar wind particles are able to penetrate inside the magnetosphere,
down to the upper atmosphere in dayside auroral zones via these funnels.

The magnetosphere is populated with various distinct plasma populations (in terms of
energy and density). For example, the toroidal-shaped radiation belts are located between
2 and 6 RE, consisting of highly energetic particles that are trapped on magnetic field
lines bouncing between the two hemispheres. The plasmasphere, a torus-shaped volume
co-located with the radiation belts, consists of cool and dense plasma. The plasma comes
from two main sources: the ionosphere and the solar wind. Plasma from ionospheric out-
flow is populating mainly the plasmasphere. Plasma from the solar wind first populates
the outer regions of the magnetosphere, mainly in the plasma sheet, which can then be in-
jected towards the inner magnetosphere in the radiation belts and ring current (Kronberg
et al., 2021). The overall structure of the magnetosphere is supported by various current
systems, see e.g. Ganushkina, Liemohn, and Dubyagin (2018) for a review.

• Magnetopause and Magnetotail Currents
The magnetopause separates the low magnetic field strength regime of the solar wind
from the high magnetic field strength regime of the magnetosphere. This configuration
leads to ∇ × B ̸= 0. As the solar wind particles encounter the much stronger magnetic
field strength of the magnetosphere their gyration is influenced in the magnetopause
layer. They perform half a gyration with ions having a larger gyroradius than electrons
and the species are deflected in opposite directions. This leads to the generation of the
magnetopause currents, also known as the Chapman-Ferraro currents, which flow on
the surface of the magnetosphere as depicted in figure 2.6 in green. In the magnetotail,
these currents close through the cross-tail current that flows in the equatorial plane
from evening (dusk) to morning (dawn) sector. The shape and geometry of the current
sheet is depending on a feature of the Earth’s intrinsic magnetic field, the dipole tilt
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Figure 2.5: An illustration of the inner structure of the magnetosphere with its complex
morphology of current systems. Image courtesy from the National Oceanic and Atmo-
spheric Administration (NOAA).

Figure 2.6: Schematics of the magnetopause current system (Chapman-Ferraro current
in green) that closes via the cross-tail current (in pink) on the night-side. The substorm
current wedge (in blue) is an important current system that arises during substorms.
(Taken from Milan et al. (2017))
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Figure 2.7: Schematics of the Region 1 (blue) and Region 2 (red) Field Aligned Currents
(FAC) systems together with the Ring current (pink). (Taken from Milan et al. (2017))

(see chapter 2.5.1), and the conditions in the IMF (Tsyganenko, 1989; Tsyganenko &
Stern, 1996).

• Ring Current
The dipole configuration of Earth’s internal magnetic field (i.e. a curved geometry with
gradient magnetic field that is stronger towards the poles than at the equator) leads
to two magnetic mirror points, as discussed in chapter 1.2. The particles undergo
a bounce motion and become trapped, leading to increased particle fluxes inside of
∼6 RE, forming the so-called radiation or Van Allen belts for the most energetic
particles. Additionally to the bounce motion, the particles also experience a gradient
and curvature drift due to the inhomogeneous dipole magnetic field, leading to an
azimuthal drift. The drift, as in equation (1.15), is westward for ions and eastward for
electrons, resulting in charge separation. The differential motion of the particles give
rise to an important current flowing in the equatorial plane at around 2 - 9 RE: the Ring
Current (Cole, 1966). During geomagnetic storms, the partial ring current connects
to the high latitude ionosphere as depicted in pink in figure 2.7. Moreover, further
particles are injected following tail reconfiguration, leading to a significant increase in
intensity of the ring current which is recorded by ground magnetometers (see chapter
2.4).

• Field-Aligned Currents (FACs)
The field aligned currents (also referred to as Birkeland currents) connect the magne-
tosphere with the high-latitude ionosphere (Iijima & Potemra, 1978). Two types of
FACs are distinguished: Region 1 FACs connect the high-latitude ionosphere into the
dayside magnetopause and the magnetotail and are farther poleward (depicted in blue
in figure 2.7) and Region 2 FACs that connect to the ring current farther equator-ward
(depicted in red). They are a consequence of convection patterns driven by the solar
wind and pressure gradients in the magnetosphere.

These current systems and the magnetosphere in general are not static. The Earth’s
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rotation induces co-rotation of the atmosphere such that the plasma in the inner magneto-
sphere drags the magnetic field lines with it. The convection in the outer magnetosphere
is due to the solar wind flowing around it through viscous interaction and is enhanced by
reconnection processes at the magnetopause and in the tail. The steady-state magneto-
spheric convection is illustrated in figure 2.8 after Dungey (1961). The IMF that is frozen

Figure 2.8: The steady-state magnetospheric convection that is initiated via magnetic
reconnection of the IMF with Earth’s magnetic field on the day-side after Dungey. The
corresponding convection patterns in the high-latitude ionosphere are depicted on the
lower right. (Taken from Kivelson and Russell (1995))

into the solar wind encounters the Earth’s magnetic field. When the IMF is pointing in
the opposite direction than the Earth’s magnetic field, i.e. the IMF is pointing south-
ward (also referred to as Bz negative), magnetic reconnection is enabled to take place on
the day-side. This is the case for field lines 1 and 1’. The previously closed field line 1
from Earth is opened up and connected to the solar wind 2, 2’. The solar wind drags
the field line over the polar cap 3, 3’ and into the magnetotail 4, 4’. In the tail lobes
magnetic energy piles up, leading to convection of field lines towards each other from
both hemispheres 5, 5’. Eventually, magnetic tension is high enough to trigger magnetic
reconnection, forming a new, closed field line 6 and 6’ that is again connected to Earth.
The other field line 7’ forms a magnetic island and is expelled into interplanetary space.
Accelerated due to the conversion of magnetic energy into kinetic energy, the connected
field line 7 together with the the particles moves towards Earth on the night-side. When
magnetic pressure is higher than the kinetic pressure, field line 8 becomes dipolar-shaped
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again. The closed field line 9 is then transported back to the day-side. This cycle induces
the typical convection patterns observed in the high-latitude ionosphere, as depicted in
the lower part of figure 2.8 for which the numbers mark the associated magnetospheric
field lines. The induced convection patterns are equivalent to an electric potential pattern
with a total potential difference between dawn and dusk of about 50-100kV, also referred
to as the polar cap potential. In practice, the convection is not steady. Though the re-
connection rates on the day-side and night-side keep balance on longer time-periods, for
shorter periods a strong imbalance can occur, which leads to the formation of substorms
described in detail in chapter 2.4. This short introduction of the magnetosphere already
suggests the complex coupling between the solar wind, magnetosphere and ionosphere.
In fact, in order to understand and predict phenomena, it is needed to consider all these
subsystems as one unified system with constant interaction.

2.3 The Ionosphere

The neutral atmosphere of Earth can be classified by distinct temperature profiles in
dependence of altitude. The troposphere, which reaches from the ground to approximately
12 km, is the layer we live in and for which temperatures fall with raising height. The
stratosphere, located between 12-50 km is characterised by a raise in temperature due to
the absorption of solar UV light by ozone. Between 50 and 85 km, the mesosphere exhibits
fast falling temperatures with increasing height due to effective CO2 cooling. Above 85 km
temperatures rise quickly in the thermosphere as solar UV and soft X-ray radiation can
penetrate these heights easily, resulting in effective heating (de Pater & Lissauer, 2015).
The solar radiation does not only increase temperatures but is energetic enough to invoke
ionisation and plays an important factor in the creation of the ionosphere. As the neutral
atmosphere is characterised by its temperature profile, the ionosphere can be characterised
by its electron density profile as illustrated in figure 2.9. The upper neutral atmosphere
overlaps with the lower ionosphere, leading to plasma-neutral interactions, especially in
the D- and E-region. Detailed reviews including chemistry and transport mechanisms in
the ionosphere, and treatment of its creation and variations can be found in e.g. Kelley
(1989) and Schunk and Nagy (2009). In the following, the main ionisation and loss
processes that are responsible for the distinct density profile of the ionosphere are briefly
described.

• Solar UV Ionisation
The main source of electron production in the ionosphere is direct irradiation from
the Sun. The high energies needed to ionise atmospheric atoms and molecules, i.e.
removing electrons from the atom’s shell, come from above the UV regime of the
solar radiation spectrum. The stronger the radiation, the deeper it can penetrate
into the atmosphere as depicted in figure 2.9. When an atom or molecule is ionised,
the incident radiation decreases its intensity as it spends energy on ionisation. The
amount of decrease depends upon the initial intensity, the number density of the
neutral gas, the absorption cross-section and the radiation’s path length through
the medium. According to the barometric law, the neutral density decreases with
altitude and thus the radiation intensity increases with altitude. This leads to a
pronounced electron density peak around 400 km, forming the so-called Chapman
profile (Chapman, 1931).
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Figure 2.9: The electron density profile of the ionosphere with indications of the solar
radiation penetration depths. Distinct profiles for night- and day-time during solar max-
imum and minimum are indicated. (Taken from Pfaff (2012))

• Ionisation by Energetic Particles
Energetic particles essentially from the magnetopause and the tail that enter the at-
mosphere via magnetic field lines have enough energy to ionise atoms and molecules.
This production process dominates during the night when the main source of ionisa-
tion, the solar radiation, ceases. This process is able to maintain the general profile
of the ionosphere but to a weaker extent. The stopping height marks the height at
which the incoming particle deposits the majority of its energy into the atmosphere,
leading to the night peaks. Even though less energetic, this process is especially
important at high latitudes where ionisation and conductivity is reinforced through
precipitating particles from the solar wind via dayside and tail reconnection.

• Recombination
An important loss process is recombination during which the positive ion gains
an electron and forms a neutral atom. The recombination rate depends upon the
number densities of ions and electrons, as well as the collision frequency. In the
lower ionosphere recombination is dominant as collision frequencies are increased
due to the high density of neutral atoms and molecules.

• Charge Exchange
The process of exchanging electrons between interacting and colliding particles (e.g.
neutral atoms with ions) is called charge exchange. This process changes the nature
of the ions and is proportional to the electron number. This is an important loss
process in the high altitude F-region of the ionosphere, converting hydrogen ions
into oxygen ions and vice-versa.

The combination of these processes forms the characteristic density profile of the iono-
sphere as sketched for mid-latitudes in figure 2.9. It is common to divide the ionosphere
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according to this profile into three main layers: the D-, E- and F-regions.

• The D-Region
The D-region is situated at an altitude of about 60 to 90 km. The main ionisation
process is high-energy X-ray radiation which is able to penetrate these depths. Due
to the relatively high density of neutral atoms and molecules from the atmosphere,
high collision frequencies occur leading to a gas that is only weakly ionised. In this
region, chemistry dominates and negative and complex ions can be formed. Dur-
ing night-time, the production source of solar irradiation ceases and loss processes
dominate, such that the D-region vanishes. Temporarily the ionisation level in the
D-region can be remarkably enhanced during events like solar flares.

• The E-Region
At altitudes between 90 and 150 km, the E-layer forms due to the absorption of
EUV to Far UV radiation with peak densities around 110 km. At these heights,
substantial densities of neutrals are still present and the gas is partially ionised.
This allows strong interactions due to differential motion between the ionised and
neutral particles giving rise to the E-region dynamo that is the source of impor-
tant current systems in the ionosphere. Generally, this layer is in balance between
production, charge exchange and loss processes and thus in chemical equilibrium.
Auroral particle precipitation is able to maintain the E-region during the night in
higher latitudes.

• The F-Region
The F-region can be classified into two sub-regions during daytime: The F1-region
forms by absorption of shorter UV radiation at around 200 km followed by chemical
formation of NO+ ions which possesses a very low ionisation potential. It disap-
pears during the night as this production source ceases. The F2-region located at
an altitude of about 300 km is predominately populated by oxygen ions. During
the day, O+ is produced locally in the ionosphere and transported upward to the
plasmasphere. This acts as a reservoir and the particles are transported downward
maintaining the F-region during the night as recombination effects are also decreased
due to low densities.

Each of these layers has a major dependency on solar radiation which creates the distinct
day and night density profiles in figure 2.9. The solar radiation intensity varies with
solar cycle and so does the ionisation profile. During solar maximum (and thus Sunspot
maximum), the electron density is significantly higher as solar radiation is increased than
during solar minimum (and thus Sunspot minimum). The difference is in the order of one
to two magnitudes. Additionally, as solar illumination varies with season, densities are
higher during summer than winter.

2.3.1 The E-Region Ionospheric Dynamo
At the altitudes of the E-region, abundances of charged and neutral particles co-exist and
allow for strong interactions between these populations creating the so-called ionospheric
dynamo. In turn, this dynamo gives rise to important current systems in the ionosphere.
In this region, the plasma can be considered partially ionised and magnetised with den-
sities allowing abundant collisions. The electron cyclotron frequency is higher than the
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electron-neutral collision frequency for the lighter electrons. Meanwhile, the ion cyclotron
frequency of the heavier ions is lower than their collision frequency with neutrals. This
leads to the electrons being frozen into the magnetic field, while the ions are governed
by winds and tides from the neutral atmosphere. Consequently, in Ohm’s law (1.25) the
conductivity tensor becomes anisotropic as in (1.28) and writes as

j = σ(E + U × B) , (2.1)

with U being the neutral wind velocity and the anisotropic conductivity tensor σ with
Pedersen conductivity σP , Hall conductivity σH and parallel conductivity σ∥. The con-
ductivities depend upon electron density and collision frequencies between electron-ions
and ion-neutrals. The exact expressions are derived in K.-I. Maeda (1977) and Takeda
and Araki (1985). Figure 2.10 illustrates a typical conductivity profile in the day-time
ionosphere at mid-latitudes as generated by the IRAP plasmasphere-ionosphere model
(IPIM) (Marchaudon & Blelly, 2015).
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Figure 2.10: Conductivity profile of the E- and F-region in the mid-latitudinal ionosphere
using IPIM (Marchaudon & Blelly, 2015).

The Hall conductivity σH (blue) peaks at lower altitudes with higher values than the
Pedersen conductivity σP (in red). The parallel conductivity σ|| (in black) is always higher
than σP and σH . These conductivities are the basis of ionospheric current systems as par-
allel (field-aligned), Pedersen and Hall currents are generated and coexist in this system.
The differential motion between ions and electrons creates a Hall current through the
electron motion perpendicular to the electric and magnetic fields, since ions are strongly
slowed down by collisions with neutrals. At higher altitudes where the cyclotron and
collision frequency of ions becomes comparable, the ions start moving in the direction of
the electric field and they carry a Pedersen current. In the high-latitude ionosphere, the
Pedersen currents have the role of closing FACs in the auroral oval and are associated
with auroral displays (Baker, 2019).
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2.3.2 Solar Quiet Current Systems
In low- and mid-latitudes the E-region dynamo is powering an important current system:
the Solar Quiet (Sq) current system. The name solar quiet comes from their imprints on
geomagnetic field measurements as they induce very smooth and characteristic diurnal
variations in the absence of solar storms, i.e. during geomagnetically quiet periods.

Figure 2.11: Simulation of the global intensity of the solar quiet current systems for low
solar activity (left) and strong solar activity (right). (Taken from Yamazaki and Maute
(2017))

The global shape of the Sq current systems is depicted in figure 2.11 and forms two
vortex cells, one in each hemisphere. The direction of the currents is inverted in the
two hemispheres, i.e. in the northern hemisphere (NH) the current cell is directed anti-
clockwise and in the southern hemisphere (SH) clockwise. At the geomagnetic equator
where the two cells meet a very strong zonal current is flowing reinforced by the specific
magnetic configuration in this region: the Equatorial Electrojet (EEJ), see chapter 2.3.3.1.
The Sq currents cannot be directly measured, but are indirectly derived from magnetic
field data (see chapter 2.6.1). The typical patterns induced by the Sq current cells in
magnetometer readings is depicted in figure 2.12 for a large set of magnetometer stations
spread over latitude and aligned on one longitudinal sector. The magnetic field is given
in geographic coordinates, N pointing towards North, E towards East and Z vertically
down (see chapter 2.6.3). The North component indicates the position relative to the
focus of the current cell. In the NH, it is negative when the station is situated above the
focus and positive when it is situated below the focus. In the SH, it is the opposite as
the current cell flows in the opposite direction. The East component shows a smooth sine
signal that changes sign from NH to SH. The Z component seems mainly unaffected. In
all three components the footprints of the equatorial electrojet is clearly visible around
the dip equator.

As these cells are powered by the E-region dynamo which is depending on direct solar
irradiation, these current systems are concentrated on the day-side. Due to the coupling
to the neutral atmosphere in the dynamo region, the Sq currents are strongly modulated
by atmospheric tides. Such tides are global-scale oscillations with harmonic periods of a
day, i.e. 24 hours, 12 hours, 8 hours, 6 hours and so on of which the 24 hours tide is the
primary driver of Sq currents (H. Maeda, 1955; Kato, 1957; Lindzen & Chapman, 1969).
Through the absorption of infrared radiation in the troposphere and absorption by ozone
in the stratosphere, the latent heat release generates upward-propagating tides. As they
propagate upward they grow exponentially and when they reach the dynamo region they
have amplitudes of several tens of meters per second in the horizontal wind. One third
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Figure 2.12: Average daily variations in magnetic field measurements in the three com-
ponents North (N), East (E) and vertically down (Z) during May to August 1996-2007.
(Taken from Yamazaki and Maute (2017))

of the total Sq currents are driven by such upward propagating tides (Yamazaki & Rich-
mond, 2013; Yamazaki, Richmond, Maute, Wu, et al., 2014). Analysing magnetometer
measurements from mid-latitudes, the spectra show distinct spikes at 24h, 12h, 8h and
6h which are a clear indicator of the Sq current system (Campbell, 1989).

As already noted before and as seen in figure 2.9, the electron density and thus conduc-
tivity is varying with the solar cycle and consequently modulates the solar quiet current
system. Distinct solar cycle, seasonal and day-to-day variations of the Sq currents are
well documented and outlined in the following. A detailed overview and description of the
Sq currents together with the equatorial electrojet can be found in Yamazaki and Maute
(2017).

• Solar Cycle Dependency
The conductivity of the ionosphere is closely connected with solar activity. This
affects the amplitude and the focus position of the Sq current cells. The amplitude
is typically two times larger during solar maximum than during minimum (Takeda,
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1999). Various studies suggest that the amplitude is highly linearly correlated with
solar proxies like F10.7 (Yamazaki & Kosch, 2014; Yamazaki & Maute, 2017). Stud-
ies have shown that the amplitude of the 24h, 12h and 8h Fourier components are
strongly dependent on F10.7 while the same holds for the phase for the 24h and 12h
components and thus the location of the focus which shifts to later local times as
solar activity increases (Olsen, 1988; Yamazaki & Kosch, 2014; Yamazaki & Maute,
2017).

• Seasonal Dependency
In general, the Sq amplitude is higher during summer than winter at mid-latitudes
due to prolonged solar irradiation. Peak amplitudes can be found during both
equinoxes in low- and equatorial latitudes which can be related to the influences
of the equatorial electrojet and possible equinoctial effects. The amplitudes during
summer are around three times higher than during winter (Takeda, 1999; Yamazaki
& Maute, 2017). Especially during winter, the currents can become so weak that the
cell itself may disappear (Campbell, Arora, & Schiffmacher, 1993; Rastogi, Crandra,
& James, 1996; Stening & Winch, 2013). The season also has a significant effect
on the location of the focus. During summer the focus is shifted to earlier local
times when compared to winter, which holds for both hemispheres (Campbell &
Schiffmacher, 1987, 1988).

• Day-to-Day Variability
The Sq current systems show strong day-to-day (D2D) variability in shape, ampli-
tude and phase. This D2D variability is well documented while its driving mech-
anisms are yet to be fully understood, see e.g. Hasegawa (1960); Stening (2008).
Figure 2.13 is an example of such variations for four stations in the Indian sector,
spread over a small longitudinal band, covering mid- to low latitudes, see panel
a. Panel b illustrates the average daily variation ∆H of the horizontal component

Figure 2.13: Daily variations of the northern cell of the solar quiet current system. Panel
a indicates the location of the magnetic observatories. Panel b shows the average daily
variation in the horizontal H component. Panel c shows the value of the H component
at noon per day. (Taken from Yamazaki and Maute (2017))

of the geomagnetic field between March and April 2009. Similarly, the shape of
this variation gives information about the observatory’s location with respect to the
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cell’s focus. Kashi (KSH) is close to the focus, such that when the cell is exactly
above the station, ∆H is zero with changing signs before and after the crossing.
Novosibirsk (NVS) is to the North of the current cell and thus is influenced by the
top, westward portion of the Sq current. Jaipur (JAI) and Alibag (ABG) are south
of the focus and thus are influenced by the eastward portion. Lastly, the spike
observed in Tirunelveli (TIR) is induced by the stronger EEJ. Panel c shows the
values of ∆H at noon during the same period for each station and each day. The
amplitudes can vary highly irregularly from one day to the next at all latitudes.
This is a persistent feature of the solar quiet current system which is present also
during magnetically very quiet periods, as is the case for the period of figure 2.13
which is during the very quiet year of 2009 (during solar minimum). This suggests
that the intrinsic D2D variation has its roots in winds and tides from the neutral
atmosphere. Many studies and simulations have been conducted to highlight the
importance of lower-atmospheric drivers, like e.g. Kawano-Sasaki and Miyahara
(2008); Jin et al. (2011); Fang et al. (2013); Yamazaki, Richmond, Maute, Liu, et
al. (2014). Further studies and investigations are needed for a better understanding
of the causes for the D2D variability.

2.3.3 Electrojets
Besides the Sq current system, the ionospheric dynamo gives rise to further currents: the
already mentioned equatorial electrojet and the auroral electrojets. These are themed jets
due to their jet-like features.

2.3.3.1 Equatorial Electrojet

The Equatorial Electrojet (EEJ) is a strong zonal current that flows above the magnetic
dip equator on the dayside of Earth (Chapman, 1951). Its effects are clearly present in
geomagnetic field measurements as can be seen in figure 2.12 and 2.13. The physical
phenomena associated with the EEJ is the so-called Cowling effect (Cowling, 1932). At
the equator the magnetic field lines are horizontal and engulfed in the ionosphere while
the ionospheric electric field points eastward in general, leading to an eastward Peder-
sen current and a downward Hall current. However, due to the poorly conducting layers
surrounding the dynamo region, a charge accumulation occurs at the upper and lower
boundaries of the ionosphere. In turn, this generates a vertical Pedersen electric field
enhancing the conductivity parallel to the boundaries. Consequently, this generates an
eastward Hall current, adding to the already existing eastward Pedersen current. Similar
to the Sq currents, the EEJ exhibits distinct solar cycle, seasonal and day-to-day vari-
abilities (Yamazaki & Maute, 2017). It is under debate if the EEJ is a current system
on its own or a consequence of the Sq current systems. At the very least, the Sq current
systems contribute to the EEJs amplitude. Typical latitudinal ranges for the EEJ are
between -10◦ to 10◦ (Yamazaki & Maute, 2017).

2.3.3.2 Auroral Electrojets

While the Sq current systems and the EEJ are driven by the ionospheric wind dynamo,
the auroral electrojets (AEJ) are driven by the ionospheric solar wind dynamo. They
arise mainly due to the convection patterns of the magnetic field lines and are strongly
modulated by energy input through the coupling with the solar wind. Through increased
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precipitation of particles, the conductivities of the auroral ionosphere are significantly
enhanced and give rise to these strong Hall currents in the northern and southern hemi-
spheres, flowing along the auroral ovals. Especially during storm conditions, these current
systems are significantly enhanced.

2.4 Storm Activity

If the IMF in the solar wind points northward, the reconnection rate with the geomagnetic
field is drastically lowered. If this condition holds for a longer period of time the mag-
netosphere may be considered to be in a quiet state (Moretto et al., 2021). However, if
the incoming solar wind has a southward directed IMF (negative Bz), promoting dayside
reconnection to take place, considerable amounts of energy and particles from the solar
wind are injected into the magnetosphere-ionosphere system. This leads to increased con-
vection and reconnection rates, enhances current systems and leads to further phenomena
which play an important role for space weather. The general consensus discriminates
between magnetospheric substorms and geomagnetic storms.

2.4.1 Magnetospheric Substorms
Rostoker et al. (1980) defines substorms as follows:

”A magnetospheric substorm is a transient process initiated on the nightside of the earth
in which a significant amount of energy derived from the solar wind-magnetosphere

interaction is deposited in the auroral ionosphere and in the magnetosphere.”

Enhanced reconnection during longer periods of southward IMF Bz lead to enhanced
energy input that is transferred to the magnetotail, where reconnection rates increase as
magnetic pressure increases. As indicated in figure 2.8, reconnection in the tail leads to
enhanced amounts of newly created closed magnetic field lines that are pushed towards
Earth. In this process a pair of FAC currents is formed referred to as the substorm
current wedge as depicted in light-blue in figure 2.6. This system plays an important
part for substorms as it diverts parts of the tail-current into the high latitude ionosphere.
The supplied energy through this process enhances the auroral electrojets and leads to
increased auroral display (Kepko et al., 2015). Typical timescales for substorms are
around 2 to 4 hours and they can be divided into three phases: the growth, expansion and
recovery phase. During the growth phase the magnetotail loads due to negative Bz enabled
dayside reconnection and the polar cap expands. The two lobes act as energy storages
as magnetic field lines are convected (Caan, McPherron, & Russell, 1973; Runov et al.,
2021). During the expansion phase, the energy from the tail is released, intensifying the
auroral electrojets, and augmenting auroral displays. The auroral oval expands equator-
ward due to increased reconnection at the magnetopause and tail. After the unloading
process, the recovery towards the quiet state starts.

Substorm activity is strongly connected to auroral activity and is usually confined
to high latitudes. Against the suggestion of the naming, substorms are not necessarily
accompanied by storms. Generally, they do appear during global storms, but can oc-
cur independently. Thus, substorms are more abundant than geomagnetic storms and
generally less intense.
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2.4.2 Geomagnetic Storms
A geomagnetic storm is a magnetic disturbance observed worldwide that lasts for several
hours to days and is not confined to high-latitudes but affects also low- and mid-latitudes.
Thus it is said to be geoeffective. These global-scale disturbances of the geomagnetic field
are induced by strong solar transients like CMEs accompanied by prolonged southward
IMF Bz of several hours. The amount of energy that is deposited into the magnetosphere-
ionosphere system and thus the level of geoeffectiveness depends greatly on the solar wind
parameters like velocity, density as well as strength and orientation of the IMF. Due to
the increased energy deposition during geomagnetic storms the current systems are sig-
nificantly enhanced. This includes increased substorm activity and intensifying of auroral
electrojets. The most prominent feature is the enhancement of the ring current which
experiences elevated particle injection from increased reconnection in the tail (Kistler et
al., 2016) and with protons and oxygen ions fed by FACs from auroral regions (see figure
2.7). This increase is also referred to as the storm-time ring current which can last for
hours and days. Its clearest signature can be found in geomagnetic field measurements.
As the storm-time ring current flows westward in the equatorial plane, its induced mag-
netic field is in opposite direction of the Earth’s dipole field, leading to a clear depression
of the horizontal H component as is indicated in figure 2.14.

Figure 2.14: Geomagnetic storm effects on the horizontal component of geomagnetic field
measurements at four low-latitude observatories. The typical phases of the storm are
indicated. 1 GAMMA corresponds to 1 nT. (Taken from Campbell (2003))

Geomagnetic storms can be divided into three phases: the initial, main and recovery
phase. The initial phase is marked by a positive increase that is associated with the
compression of the dayside magnetic field due to increased solar wind pressure. When the
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compression is especially strong, a Storm Sudden Commencement (SSC) can be observed
as a strong positive deflection. The main phase is indicated by a strong negative deflection
due to the enhancement of the ring current. The recovery phase encompasses the decay
of the storm-time current (Hutchinson, Wright, & Milan, 2011). The disturbance field
in low- and mid-latitudes is generally not axisymmetric. During the main phase of the
storm, the ring current is usually asymmetric as injected ions are mainly present in the
evening and afternoon sectors. When injection finishes and the recovery phase starts, the
ring current becomes more symmetric (Sugiura & Chapman, 1960; Akasofu & Chapman,
1964; Weygand & McPherron, 2006).

It is common to characterise geomagnetic storms according to the global deflection
of the magnetic H component induced by the enhanced ring current. This deflection is
summarised in the disturbance storm-time (Dst) index derived from the four magnetic
observatories from figure 2.14. Gonzalez et al. (1994) defines geomagnetic storms as

”... an interval of time when a sufficiently intense and long-lasting interplanetary
convection electric field leads, through a substantial energization in the

magnetosphere-ionosphere system, to an intensified ring current strong enough to exceed
some key threshold of the quantifying storm time Dst index.”

As such, the 1-hour Dst index and nowadays also its 1-minute version the SYM-H index,
have been used in many studies to define and classify geomagnetic storms (see chapter
3.1.3 for further details on these indices). While strong CMEs can cause severe storms
with associated Dst values well below −100 nT, CIRs can cause moderate storms especially
during the declining and low solar activity phases (Allen et al., 2020).

Geomagnetic storms on a global and substorms on a local level can induce unwanted
and harmful effects in our technology and pose a threat to human health and safety,
as discussed in the introduction of this chapter. Enhancing our capabilities for their
accurate forecasting is an important and active field which also started to leverage artificial
intelligence methods (Camporeale, 2019; Nitti et al., 2022).

2.5 Geomagnetic Field
The geomagnetic field is a superposition of numerous magnetic sources, with the Earth’s
internally-generated magnetic field being the predominant contributor, commonly referred
to as the main field. The previously introduced phenomena and concepts arise due to solar
radiation, the atmosphere and the interaction of the solar wind with the Earth’s main
field, leading to a complex and coupled system of currents within the ionosphere and
magnetosphere. According to Amperes Law in equation (1.35), each of these currents
induces a magnetic field and as such contributes to the overall geomagnetic field.

Sources are classified into external and internal origin. Figure 2.15 illustrates some
prominent sources of the geomagnetic field. They are classified into external and internal
origin. External sources include current systems like Sq, FACs and EEJ. Internal sources
include the main field and are discussed in the following.

2.5.1 Earth’s Main Magnetic Field
Within the depths of our Earth, pressure and temperature levels are so high that rock,
iron and nickel melt,constituting the fluid outer core. These fluids are in motion via
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Figure 2.15: Overview of internal and external sources of the geomagnetic Field. (Taken
from Olsen (2016))

convection and, together with the rotation of Earth, generate an electric current that
induces a powerful magnetic field. This process is referred to as the geomagnetic dynamo
and is thought to be the reason for Earth’s intrinsic magnetic field (Gauss, 1877; Lan-
deau, Fournier, Nataf, Cébron, & Schaeffer, 2022). Within around 6RE this field can be
approximated by a dipole magnetic field with strengths of ∼60 000 nT at the poles and
∼25 000 nT at the equator. The dipole geometry is responsible for the magnetic mirrors
that lead to the formation of the radiation belts and ring current, as discussed earlier in
chapter 2.2. The dipole axis is tilted with respect to Earth’s rotation axis of approxi-
mately 11◦ and the magnetic south pole is located in the northern hemisphere, while the
magnetic north pole is located in the southern hemisphere.

The dynamo process is not stable such that the magnetic field’s intensity and direc-
tion are slowly but continuously changing. The timescales involved in this smooth drift
range from years to millennia. Paleomagnetism is the field of study that uses specialised
techniques to extract magnetic field information from very old samples to understand
these extended long-term changes of the main field (Gilder & Lhuillier, 2019). The most
dramatic events are pole reversals whereby the field strength declines for a few thousand
years until the reversal takes place, with a succeeding strengthening of the field in the
following thousand years (Gubbins, 2008). Currently, the magnetic south pole moves
with up to 60 km per year from Canada towards Siberia and the magnetic north pole
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with around 5 km per year from Antarctica towards Australia (Olsen & Mandea, 2007).
These gradual changes are referred to as secular variation which is an active field of study
(Bloxham & Gubbins, 1985; Finlay, Olsen, Kotsiaros, Gillet, & Tøffner-Clausen, 2016;
Finlay et al., 2020). Though gradual, they are important factors for space weather as
changing field configurations can directly accentuate its effects (Mandea & Chambodut,
2020).

In order to describe the ever-changing magnetic field, sophisticated models are gener-
ated that are based on geomagnetic field measurements. The International Geomagnetic
Reference Field (IGRF) model is produced and maintained by the International Associ-
ation of Geomagnetism and Aeronomy (IAGA). The model represents the geomagnetic
field in terms of spherical harmonics which coefficients are determined every five years
to account for the temporal changes of the secular variation. The spherical harmonic
expansion shows that the contribution of the 1st order degree (the dipole part) accounts
for approximately 93 % of the total magnetic field. The latest model is IGRF-13 and is
valid for the years 1990 to 2025 (Alken et al., 2021).

2.5.2 Further Internal Sources
Within Earth’s crust, remanent and induced magnetisation of magnetic minerals like
magnetite and titanium are found within the lithosphere. The space era enabled the
mapping of the lithospheric field with satellite surveys (Thébault, Vigneron, Langlais, &
Hulot, 2016). The associated field strengths are location-dependent and in general are not
much more than 100 nT, but can reach several hundreds of nanotesla for major anomalies
in regions like Kursk and Bangui (Taylor & Frawley, 1987; Njiteu Tchoukeu et al., 2021).
Crustal bias averages and respective variances for geomagnetic observatories is given in
e.g. Verbanac, Mandea, Bandic, and Subasic (2015) of which a selection is summarised
in table 2.1. The variation around the mean is of oscillatory nature and can be related to
errors in the input data and influences from external fields.

Another internal source is the ocean circulation that generates a magnetic field that
can be sensed at locations nearby the oceans and coastal regions. The associated electric
current is generated by salt ions that are deflected by the Lorentz force in different direc-
tions due to their polarity (Petereit, Saynisch-Wagner, Morschhauser, Pick, & Thomas,
2022).

2.5.3 Variability of the Geomagnetic Field
When recording the geomagnetic field, the resulting signal is a composition of all internal
and external sources, resulting in a wide amplitude-frequency spectrum as depicted in
figure 2.16. The crustal field is virtually constant and not represented in the spectrum.
The variations induced due to the internally-generated magnetic field happen gradual
and over extended periods of time. They are associated with high amplitude changes on
the low frequency part of the spectrum. This includes pole reversals that stretch over
millions of years and the secular variation that consistently changes the amplitude which
can be recognised within months to years. External sources act on shorter time-scales
and are associated with smaller amplitude variations. The solar cycle with its period
of around 11 years induces amplitudes in the range of 10-20 nT. In mid-latitudes the
solar quiet current systems can induce diurnal and sub-diurnal variations of 20-50 nT.
Substorms are responsible for field changes of up to 1000 nT in polar regions lasting for
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Table 2.1: Selected averages and respective variances of crustal biases for selected mag-
netic observatories given by Verbanac et al. (2015).

Code X (nT) Y (nT) Z (nT)
ABK 6.19 ± 12.42 63.02 ± 3.35 42.95 ± 11.29
CLF -82.09 ± 9.67 -13.00 ± 2.9 124.78 ± 7.48
ESK 1.09 ± 8.21 -32.52 ± 3.27 -35.81 ± 10.71
FRD 56.86 ± 10.09 -51.35 ± 1.41 137.9 ± 7.47
HAD -51.70 ± 8.74 18.34 ± 2.62 91.28 ± 7.88
HON -185.19 ± 12.97 80.8 ± 3.1 -320.61 ± 3.91
KAK -14.80 ± 13.01 10.07 ± 1.56 -86.22 ± 4.54
MEA 92.31 ± 13.96 15.67 ± 3.72 -33.67 ± 8.18
NGK -31.60 ± 9.42 0.99 ± 2.77 -62.28 ± 8.32
OTT 122.46 ± 10.14 -133.92 ± 1.58 149.54 ± 7.24
PPT -922.02 ± 15.29 -1039.73 ± 8.72 -398.55 ±5.16
SBA -2204.59 ± 8.93 -970.29 ± 11.05 -3748.76 ± 33.56
THL -58.33 ± 10.1 98.36 ± 4.29 37.65 ± 24.64
WNG 43.76 ± 9.38 46.63 ± 2.54 -53.22 ± 8.86

several hours, while geomagnetic storms can disrupt the global geomagnetic field in the
order of hundreds of nanotesla, even in mid-latitudes for several days. Lightning induces
electromagnetic resonances between the Earth’s surface and the ionosphere. These are
referred to as Schumann resonances and are found in the high frequency regime (Price,
2016). On the very end of the high frequency spectrum, human-made noise generators
can be found which include powerline noise and radio emissions (Mandea, Korte, Yau, &
Petrovský, 2019).

2.6 Data Acquisition and Coordinate Systems
Data acquisition, just as in any other field, plays an important role in the understanding
of space weather. The advancements in technology have revolutionized measurement
techniques, allowing for more accurate, precise, and efficient data acquisition over the
past decades. Nowadays, we are able to measure magnetic fields with up to seconds
resolution and deploy instruments not only on ground but also in space. This chapter is
dedicated to the recording of the geomagnetic field and solar wind. The representation
of data in space, i.e. in vector format, depends upon the selected underlying coordinate
system, of which the most common ones for space weather are briefly presented.

2.6.1 Geomagnetic Field Measurements
The sources of the geomagnetic field come in a high spatial and temporal variety as
indicated in 2.16. Geomagnetic field changes that occur over geological timescales, like
pole reversals, are determined with paleo-magnetism techniques (Gilder & Lhuillier, 2019).
For other, shorter variations, dedicated instruments that record ambient magnetic fields
are used. In the advent of the space age, it is not only possible to collect data from
the ground, but to measure the magnetic field configuration also in space (Marchaudon,
2019).
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Figure 2.16: The amplitude-frequency spectrum of the geomagnetic field with indications
of associated sources. (Taken from Constable (2016))

2.6.1.1 Instrumentation

Historically, analogue magnetograms produced by magnetic variometers were used to
record the geomagnetic field. Such historic and abundant geomagnetic field records hold
highly valuable information and it is an important task to make these records digitally
available (see e.g. Kärhä and Tanskanen (2022)). Nowadays magnetometers are dedicated
to measure the ambient magnetic field in digital form. As it is a vector field, it consists of
a magnitude and direction. A single instrument is not able to record the entire vector and
thus combinations of magnetometers are needed to accurately measure the geomagnetic
field. The most commonly used magnetometers are Fluxgate Magnetometers which mea-
sure field variations in one or more directions and Scalar Magnetometers which measure
the magnitude of the field (Jankowski & Sucksdorff, 1996).

Fluxgate Magnetometers have a core made up of a highly magnetically permeable ma-
terial in rod or ring shape. Two windings are wrapped around the core: the excitation coil
and the sensing coil. The excitation coil is powered by an alternating current, saturating
the ferromagnetic core periodically. When there is no external magnetic field, no change
of magnetic flux is noticed at the sensing coil. However, when there is an external field, a
net change in flux induces a voltage in the sensing coil which gives information about the
ambient magnetic field. With this instrument the magnetic field variations are detected
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in one direction (Primdahl, 1979).
Scalar Magnetometers measure the magnitude of the magnetic field and are based on

magnetic resonance. A typical scalar magnetometer to measure Earth’s magnetic field
is the proton precession magnetometer (PPM) (Cahill & van Allen, 1956). The PPM
consists of a proton rich liquid placed within a coil. A current is applied on the coil. Once
the current is switched off, the precession of the protons is measured as it is proportional
to the ambient magnetic field strength.

Combining fluxgate magnetometers with scalar magnetometers allows the recording
of the absolute geomagnetic field.

2.6.1.2 Ground Observations

On Earth’s surface, magnetic observatories are facilities at stable, geographic locations
that host magnetometers and provide high-quality, long sequence, absolute geomagnetic
field measurements, with the longest continuous records being over 150 years. Nowa-
days, an increasing number of magnetic observatories are able to deliver high quality
magnetic field data with temporal resolutions of up to seconds. A list of such observa-
tories is maintained by IAGA, together with their official three letter designator e.g. the
French observatory Chambon-la-Forêt has the abbreviation CLF. The Real-time Mag-
netic Observatory Network (INTERMAGNET)1, ensures quality minute-resolution data
of its member observatories and facilitates the free data exchange between nations and
the creation of geomagnetic data products. Data from the INTERMAGNET network
comes in vector format with a resolution of 0.1 nT and 1 minute cadence. 41 magnetic ob-
servatories were involved in the creation of this network in 1991. Since then, the amount
of member observatories has been continuously rising, although also some stations opted
out completely or for a limited amount of time due to malfunctioning or stopping of
data production (Kerridge, 2001; Gilder & Lhuillier, 2019). Appendix A provides de-
tails on INTERMAGNET observatories between 1991 to 2019. The global distribution of
observatories is also depicted in figure 4.1.

Other ground facilities include magnetometer arrays that are deployable in a flexible
manner. These are usually used during measurement campaigns that aim at investigating
dedicated magnetic phenomena for a short period of time.

While these options work well on solid ground, they are less suited for magnetic
measurements on water bodies. As two thirds of our planet is covered by oceans, this
poses tight restrictions on magnetic field measurements. Dedicated marine and airborne
magnetic surveys are conducted on water and in airspace to cover these parts of the world
over a limited range and for a limited amount of time (Gilder & Lhuillier, 2019).

2.6.1.3 Satellite Missions in Space

With the launch of the space age in the 1960s, new opportunities arose including the
recording of the geomagnetic field from space. Since then, almost all satellites harbour
fluxgate and scalar magnetometers. Various dedicated space missions with explicit science
goals regarding the geomagnetic field have been conducted by national space research
centres, as well as international space agencies like the European Space Agency (ESA)
and National Aeronautics and Space Administration (NASA). The CHAMP mission from
the German Aerospace Center (DLR) launched in 2010 was dedicated to investigate the

1intermagnet.github.io

https://intermagnet.github.io
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Earth system with focus on its gravitation and magnetic field, as well as the atmosphere
and ionosphere. During its more than 10 year mission it helped expand our knowledge
of the geomagnetic field including the crustal field (Hemant, Maus, & Haak, 2005), the
secular variation (Golovkov, Zvereva, & Chernova, 2005; Holme & Olsen, 2005), as well as
neutral thermospheric waves (Park et al., 2014). The SWARM mission by ESA launched
in November 2013 consists of three identical satellites and is dedicated to investigations
of Earth’s magnetic field and its accompanying electric currents. Since its launch, it
has enabled progress in understanding ionospheric current systems (Chulliat, Vigneron,
& Hulot, 2016), modeling of the internal magnetic field (Tozzi, Mandea, & De Michelis,
2016) and the mapping of the lithospheric field (Thébault et al., 2016), just to name
a few. Another example is the Magnetospheric Multiscale Mission (MMS) launched in
March 2015 that is dedicated to enhance our knowledge of the still poorly understood
process of magnetic reconnection in the Earth’s near-space system.

2.6.2 Solar Wind Measurements
Not only gave the rise of the space era opportunities for in-situ studies of our near-Earth
space environment, it also opened up interplanetary space to our instrumentation. Several
missions with the goal of uncovering mysteries of the Sun and the solar wind have been
launched since. A recent example is the mission Parker Solar Probe (PSP) launched
in 2018 which is dedicated to study the Sun’s atmosphere. By flying through the Sun’s
corona it is possible for the first time to probe this interesting region in-situ and to expand
our knowledge of the origin and evolution of the solar wind (Raouafi et al., 2023).

The knowledge of real-time solar wind conditions is essential, especially for now- and
forecasting of space weather. On the Earth-Sun line, an important location, the so-called
Lagrange L1 point, arises from gravitational balance. At this point, a spacecraft is quasi-
stable, needs minimum propulsion to remain there and keeps the same angular velocity
as Earth. Additionally, this position is, for normal conditions, approximately 1 hour up-
stream of the solar wind from Earth and thus can give important in-situ information about
incoming solar wind conditions. Therefore, this point is strategically taken by several mis-
sions to observe the solar wind. Important examples include the Solar and Heliospheric
Observatory (SOHO), the Advanced Composition Explorer (ACE), the Deep Space Cli-
mate Observatory (DSCOVR) and since 2020 also Wind. The main parameters that are
measured and provided by these missions include the solar wind velocity, the interplane-
tary magnetic field BIMF and plasma temperatures and densities. Solar wind data from
ACE and DSCOVR can be found on the OMNI web interface omniweb.gfsc.nasa.gov and
are complemented with other solar wind missions such as Wind. The highest temporal
resolution for the solar wind data is 5 minutes (Papitashvili & King, 2020).

2.6.3 Coordinate Systems
Coordinate systems are used to locate objects in space and to give vector fields a reference
frame. Usually coordinate systems are adapted for the phenomena and conditions of
interest. For the geomagnetic field, various adapted magnetic coordinate systems are in
place. An extensive review including definitions of the most widely used ones can be
found in Laundal and Richmond (2016).

Geomagnetic field measurements on ground are typically given in a local geographic
coordinate system which x-axis points towards geographic North, y-axis to geographic

https://omniweb.gfsc.nasa.gov
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Figure 2.17: Local NED coordinate system with magnetic elements X, Y, Z and definition
of derived elements declination D, intensity I, field intensity F and horizontal intensity H.
(Taken from Olsen (2016))

East and z-axis vertically down, hence it is also referred to as NED system. The com-
ponents B = (X, Y, Z) are illustrated in figure 2.17. Data from the INTERMAGNET
network is provided in this NED frame. Derived magnetic elements are the declination
D which is the angle between geographic and magnetic North, the inclination I which
is the angle between the local horizontal plane and the field vector and the total and
horizontal field intensities, F and H. The expression of these quantities together with
their visualisation is presented in figure 2.17.

Up to now, we used expressions like polar, mid-latitudes and equatorial to refer to
certain latitudinal regions of Earth. As the magnetic dipole axis is tilted by approximately
11◦ from the Earth’s rotation axis, these regions do not coincide in the magnetic and
geographical frames. To describe magnetic phenomena which depend upon the dipole-
axis, it is more convenient to choose a magnetic reference frame rather than a geographic
one. Such a coordinate system depends upon the internally generated magnetic field of
Earth, implying its magnetic coordinates will change together with the secular variation.
In a first approximation the magnetic field can be described by a dipole that is tilted
from the rotation axis of 11◦ and originates in the center of Earth using the Centered
Dipole coordinate (CD) system. For a more accurate description, the Eccentric Dipole
(ED) coordinate system is based on a dipole representation with its origin shifted from
the center. Its Cartesian z-axis is aligned with the dipole axis, positively towards North,
and is shifted about 500 km from the center of Earth, thus eccentric dipole. Its y-axis is
perpendicular to the plane containing the dipole axis and the rotation axis of Earth. The
x-axis completes the right-hand system. Eccentric Dipole coordinates may be expressed
in spherical coordinates (r, θ, ϕ) with r corresponding to the Earth’s radius, θ to the
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Figure 2.18: Eccentric Dipole Coordinates projected on the Earth’s geographic surface
map. (Taken from Laundal and Richmond (2016))

magnetic latitude and ϕ to the magnetic longitude. An example of how this magnetic
coordinate system describes locations on Earth’s geographic surface is illustrated in figure
2.18.

For phenomena that are farther away from Earth, the geomagnetic field itself as a ref-
erence frame may not be ideal anymore. Especially for solar wind observations, the Geo-
centric Solar Magnetospheric (GSM) coordinate system is convenient. Its x-axis points
from the centre of Earth (which is also its origin) to the Sun. The y-axis is perpendicular
to the magnetic dipole axis and the Earth-Sun line. The z-axis completes the right-hand
coordinate system.

The angle µ, sometimes called the dipole tilt angle, is the angle between the geo-
magnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis. This angle
changes as a function of time of the day (due to the tilt of the dipole axis) and season
(due to the inclination of Earth’s equatorial plane). In the northern hemisphere, µ has
its maximum at the summer solstice and its minimum at the winter solstice, which is
vice-versa for the southern hemisphere. At the equinoxes, it is equal to zero (Cnossen,
Wiltberger, & Ouellette, 2012).

Another practical quantity is the solar longitude L which describes the position of
the Earth around the Sun and provides information on the season. It is defined as 0◦ at
spring equinox, and thus is 90◦ at summer solstice, 180◦ at autumn equinox and 270◦ at
winter solstice. For further information on its derivation please relate to Bretagnon and
Francou (1988) and Meeus (1998).

For phenomena that are driven by direct solar illumination, the solar zenith angle χ
can be used which is 90◦ when the Sun is directly above the location of interest.

The Magnetic Local Time (MLT) combines information on magnetic longitude and
solar position. Its midnight magnetic meridian is defined as the meridian that is 180◦

magnetic longitude away from the subsolar point. An hour, where 1 h corresponds to
15◦ magnetic longitude, is positive towards magnetic east. The MLT/magnetic latitude
system rotates with respect to the Earth at the rate at which the subsolar point crosses
magnetic meridians.



Chapter 3

Geomagnetic Indices

The identification and quantification of storm signatures from solar forcing is an important
subject in space weather. It has been long recognised that storm signatures are distinctly
present in geomagnetic field measurements and thus can be used for the characterisation
of the resulting disturbances. Geomagnetic indices or magnetic activity indices as based
on magnetic field measurements are designated measures to quantify magnetic activity.
Indices are traditionally derived from data coming from a network of stable ground ob-
servatories and generally represent external disturbance sources of the geomagnetic field.
The common derivation strategy is to divide the signal into contributions from quiet and
disturbed sources. When looking above the low frequency regime of the geomagnetic
field and in the absence of strong external solar drivers (see figure 2.16), the geomagnetic
field exhibits smooth variations during the course of a day on top of a longer trend that
are induced from sources like the solar quiet current system and the secular variation.
Contrarily, disturbances induce non-periodic, to some extent shorter-lived variations, like
the prominent H depression for geomagnetic storms, see figure 2.14. The determination
of the quiet sources leads to a theoretical quiet magnetic field signal, the so-called geo-
magnetic baseline. Subsequently, this baseline is subtracted from the recorded magnetic
signal, leaving the disturbance information within the residual.

One of the first indices derived in such a manner are the K-indices as introduced
by Bartels in 1939. During this epoch, trained observers identified baselines on magne-
tograms printed on paper. The general idea of these indices has persisted to the present
day. However, since this first attempt, significant improvements have been made in terms
of our understanding of the geomagnetic field and associated space weather effects. Es-
pecially, within the past few decades, entering and embracing the digital age, it has been
increasingly easier to access geomagnetic field data and the possibility to use computers to
analyze and manipulate geomagnetic field signals. This advancement led to the definition
of further indices which play a crucial role in the description of the Sun-Earth relationship
and act as an important proxy for Space Weather models and forecasts (Liemohn et al.,
2018). Significant effort has been put into the creation and derivation of magnetic indices
with the goal of improving our understanding of the solar impacts on the geomagnetic
field. While some indices are created for the purpose of evaluating the overall state of
the geomagnetic field, others are dedicated to the quantification of specific physical phe-
nomena like current systems and activities over certain regions. The International Service
of Geomagnetic Indices (ISGI) as a service of the International Association of Geomag-
netism and Aeronomy (IAGA) is dedicated to validate and provide access to geomagnetic
indices that fulfil certain quality standards. As the derivation of magnetic indices can
take a considerable amount of time and in order to provide values as soon as possible,
they can be marked as quick-look or provisional. This indicates that the index value is
not final and may differ from its definitive (and thus final) value. In the following, exam-
ples of well-established and broadly-used geomagnetic indices along with their derivation
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methods are given. Comprehensive discussions about geomagnetic indices can be found
in Menvielle, Iyemori, Marchaudon, and Nosé (2011). As will become clear, the determi-
nation of the baseline is an important part, as it defines which source contributions are
contained within an index. Baseline derivation methods for selected indices are presented
in addition to other methodologies that extract the quiet variations from geomagnetic
field measurements. The last part of this chapter is concerned with the caveats and
improvement opportunities of existing geomagnetic baselines and motivates the present
work.

3.1 Examples
As already mentioned, one of the very first introduced indices are the K-indices. Several
planetary indices that are meant to describe the overall state of the geomagnetic field are
based on these early versions and are still in use nowadays. We start with the introduction
of these and continue to more recently proposed ones which evolved as a consequence of
our improved understanding of the geomagnetic field and the availability of data.

3.1.1 K-Indices and K-derived Indices
The K-indices were introduced by Bartels, Heck, and Johnston (1939) with the goal of
quantifying irregular variations within geomagnetic field measurements. In general, they
are derived and provided by the magnetic observatories themselves following standards
recommended by IAGA.

For their derivation the irregular variations for each of the two horizontal components
X and Y of the geomagnetic field are determined. This is done by removing the so-
called non-K variations from the measurements. The non-K variations are defined to
comprise all quiet source contributions of the geomagnetic field. Further details on this
initial idea of a baseline is given in chapter 3.2. For each 3 hour UT interval, 0-3 UT,
3-6 UT, etc., and for each of the two components X, Y , the maximum difference of the
determined irregular variations is calculated. From these two values, the maximum is used
to quantify the level of irregularity in numbers between 0 to 9. A level of 0 corresponds
to a very quiet state of the geomagnetic field, while 9 indicates an extremely disturbed
state. The mapping between maximum value in nanotesla and class 0-9 was fixed for
the Niemegk observatory (NGK) in a non-linear scale, see table 3.1. As amplitudes from
magnetic disturbances depend strongly on location, this scale cannot be directly applied
to other observatories, when assuming that the same disturbance produces the same class
at each observatory. Therefore, grids are used to define the appropriate proportionality
per observatory. These grids depend upon the so-called K9 lower limit (K9LL) which is
determined for each observatory by ISGI (Mayaud, 1968). The local K-indices are used
to define more global indices, referred to as K-derived geomagnetic indices.

Table 3.1: Mapping between the amplitude of determined irregular variation and K level
class at Niemegk observatory.

Range (nT) 0-5 5-10 10-20 20-40 40-70 70-120 120-200 200-330 330-500 > 500
K-level 0 1 2 3 4 5 6 7 8 9
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3.1.1.1 Kp Index

One of the most-widely used indices is the Kp (K-planetary) index. The idea of the Kp
index is to quantify the overall planetary state of the geomagnetic field and was introduced
by Bartels (1949). It is derived from standardised K-indices, the Ks-indices, from 13
geomagnetic observatories. The standardisation process is needed to remove seasonal and
local time artifacts from the K-indices for which empirical and complex conversion tables
are employed (Bartels, 1957a, 1957b). The Kp itself is defined as the simple average of the
Ks-indices from the 13 stations and as such comes in a time-resolution of 3 hours and at
a scale from 0 to 9. The classes and thus the Kp index are non-linear, although linearity
is a desirable characteristic for indices in general. Therefore the ap index was introduced
in ap units, whereby 1 ap unit corresponds to approximately 2 nT (Bartels & Veldkamp,
1954). The Kp index is used in many space weather models and is popular in the broad
public, where it finds application in aurora forecasts. The generally accepted consent is
that Kp below 2 is considered as low to quiet geomagnetic activity, whereby Kp above 7
is considered very strong activity. It needs to be pointed out here that the observatories
used for Kp are located in mid-latitudes and are heavily weighted towards Europe, see
figure 3.4 upper left panel. Hence, the Kp indices are a more appropriate proxy for these
regions.

Kp is a historical index endorsed by IAGA, see Matzka, Stolle, Yamazaki, Bronkalla,
and Morschhauser (2021) for a recent review. Since its beginning, the Kp time-series
is derived by the German institute in charge of the Niemegk observatory, nowadays the
GeoForschungsZentrum (GFZ) Potsdam being the ISGI collaborating institute. The full
dataset is available at doi.org/10.5880/Kp.0001.

3.1.1.2 Classification of Disturbed and Quiet Days

Johnston (1943) introduced the most quiet and most disturbed days per month based on
the Kp index. Each day of a month is assigned a number derived as the mean of

1. the sum of all eight Kp values
2. the sum of the squares of the eight Kp values
3. the maximum of the eight Kp values

This allows the ranking of the days: the ten quietest Q-days are the days with the lowest
values, and the five most disturbed D-days are the ones with the highest values. The main
issue with this definition is that the Q and D days are defined relative for each month.
This implies that during a very disturbed month, even the quiet days may be disturbed
and vice-versa for very quiet months.

3.1.1.3 am, an and as Indices

The am, an and as indices as proposed by Mayaud (1968) are formally endorsed by IAGA
and are routinely produced by a French institute, nowadays the École et Observatoire des
Sciences de la Terre (EOST) being the ISGI collaborating institute in charge. The main
improvement of these indices is that a total of 24 observatories are used, see figure 3.4
lower left panel. They are located in subauroral regions, covering five longitude sectors in
the NH and four in the SH, see Mayaud, Berthelier, Menvielle, and Chambodut (2023)
for an overview of former observatories. Each sector contains two to three stations. This
distribution enables investigations of local time and longitudinal dependencies of irregular

https://doi.org/10.5880/Kp.0001
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variations. For each 3 hour interval and sector a Ki value is derived by averaging the K-
indices of the associated observatories. The value is converted to an amplitude ai in
nanotesla and normalised to represent activity at 50◦ magnetic latitude. The an index is
then the weighted mean of the five sectors in the NH and as is the weighted mean of the
four sectors in the SH. The weights account for balancing the longitudinal distribution.
The am index is the mean of as and an, am = (an + as)/2. The full dataset is available
at doi.org/10.25577/et43-6h78.

3.1.1.4 aσ Index

The am index, using a global network of observatories, describes the overall state of the
geomagnetic field. In order to provide a more localised characterisation of geomagnetic
activity, the aσ index family was introduced by Chambodut, Marchaudon, Menvielle, El-
Lemdani Mazouz, and Lathuillére (2013). They are based on the same network as the am
index and are derived analogously. The observatories are divided into four MLT sectors
which are used to derive aσDawn for 03-09 MLT, aσNoon for 09-15 MLT, aσDusk for 15-21
MLT and aσMidnight for 21-03 MLT. They are available in nanotesla and have a time-
resolution of 3 hours. The full dataset is available at isgi.unistra.fr/indices_asigma.php.

3.1.1.5 aa Index

The aa index was introduced to provide simple means of monitoring and determining
global geomagnetic activity back to 1868 (Mayaud, 1972). It is produced from the K-
indices of two antipodal magnetic observatories in England and in Australia, see Mayaud,
Menvielle, and Chambodut (2023) for an overview of former observatories and figure
3.4 middle left panel for current observatories. The K-indices are converted back to
amplitudes in nanotesla and standardised to represent activity at magnetic latitude of 50◦

by using the mid-class amplitudes of the Niemegk grid. This index is a rough measure
of geomagnetic activity with a long-term homogenised series and is formally endorsed by
IAGA and derived by EOST. The full dataset is available at doi:10.25577/9z05-v751.

3.1.1.6 Classification of Really Quiet Days

The really quiet and quiet days over 24 hours and 48 hours (CK24 and CK48 days) were
introduced by Mayaud (1972) to indicate magnetically very quiet periods. They are based
on 1) the mean of the aa index values and 2) the p-sum which is the transformed and
weighted sum of the aa values, centered on the UT day. The key for the p-sum is shown
in table 3.2.

Table 3.2: Key for transformation of aa into p-values for the classification of really quiet
days.∑

aa in nT aa ≤ 17 17 < aa ≤ 21 21 < aa ≤ 28 28 < aa ≤ 32 32 < aa
p-value 0 1 2 4 6

The classification into "C" and "K" days is as follows:
• CK24: quietest days over 24-hours with mean(aa) < 13 nT

– "C" indicates a really quiet C-day with Sum(p) < 4

https://doi.org/10.25577/et43-6h78
https://isgi.unistra.fr/indices_asigma.php
https://doi:10.25577/9z05-v751
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– "K" indicates a quiet K-day with Sum(p) >= 4
• CK48: quietest days over 48-hours with mean(aa) < 13 nT

– "C" indicates a really quiet C-day with Sum(p) < 6
– "K" indicates a quiet K-day with Sum(p) >= 6

The amount of CK24 and CK48 days per year is depicted in figure 3.1 and is not
evenly distributed as it follows solar activity. Note that the time period starts as early as
1868, due to the long-term availability of the aa index.
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Figure 3.1: The amount of quiet days per year between 1868 and 2020. From top to
bottom: The number of C24, K24, C48 and K48 days. Note that the vertical scale is
smaller for K24 and K48 (between 0 and 100) than for C24 and K24 days (between 0 and
360).

3.1.1.7 Hpo Indices

The Kp index has, though widely used, some obvious deficiencies. These include a low time
resolution of 3 hours and a fixed upper limit, which is 9. Temporal storm features below
3 hours are not resolved, nor is it possible to classify very intense events. To overcome
these issues and while guaranteeing compatibility with the Kp indices, Yamazaki et al.
(2022) introduced the Hpo indices. The Hpo indices are derived from 1-minute data of
the same 13 observatories in a very similar manner as for the Kp indices. Especially, the
baseline determination for each of the two horizontal components is the same as for the
K indices. The main addition of the Hpo indices opposed to the 3 hour Kp-index is that
they come in 30-minutes and 1-hour cadence, the Hp30 and Hp60 and are open-end such
that any value above 9 is possible. As for the Kp indices, the Hpo indices are not linear,
and have their linear equivalents in nanotesla, the ap30 and ap60 indices.

3.1.2 Auroral and Polar Indices
The Auroral Electrojet (AE) index family was introduced to track the strength of the au-
roral electrojets (Davis & Sugiura, 1966). They are endorsed by IAGA and made available
through the World Data Center for Geomagnetism Kyoto, Japan as an ISGI collaborating
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institute. For its derivation the 1-minute horizontal H measurements from 12 observa-
tories is used, see figure 3.4 upper right panel. The stations have a relatively uniform
spatial distribution along auroral and sub-auroral latitudes in the northern hemisphere.
The baseline is derived by averaging the measurements from the five quietest days (Q-
days) of each month for each individual station. The residual H components of all stations
are superposed. The upper and lower envelopes define the AU and AL indices, respec-
tively. The AE index is derived as the difference between AU and AL, i.e. AE = AU - AL,
and the AO index as the mean AO = (AU+AL)/2. As such, the AE index family comes
in units of nanotesla. The full dataset is available at dx.doi.org/10.17593/15031-54800.

In general, the AU and AL indices represent the maximum eastward and westward
electrojet currents, respectively, and can be used as energy dissipation proxies for the
auroral ionosphere. Therefore, they are often used for substorm studies. Some consider-
ations have to be kept in mind when using the AE indices. The distribution of stations
is not fully uniform, such that substorm onsets and underestimation of magnitudes may
occur. The sources included in the AE indices are not solely due to the auroral electrojets
but they can also contain contributions from other magnetospheric currents. Finally, no
counterpart exists for the southern hemisphere.

The polar cap indices, PCN for the northern and PCS for the southern polar cap, were
introduced to characterise the magnetic activity in the polar caps as it is directly connected
to the convection and thus energy input from the solar wind (Troshichev, Dmitrieva, &
Kuznetsov, 1979). They reflect the cross polar potential in millivolt per meter (mV/m)
and are derived from H and D magnetic field measurements at one observatory situated in
each of the polar caps, Qaanaaq (THL, former Thule) in the northern and Vostok (VOS)
in the southern one. The PC indices as described in Troshichev and Janzhura (2012) are
endorsed by IAGA. The ISGI collaborating institutes are the National Space Institute at
the Technical University of Denmark (DTU Space) for PCN and the Arctic and Antarctic
Research Institute (AARI) of the Russian Federation for PCS. The full dataset for PCN
is available at doi.org/10.11581/DTU:00000057.

Each PC index can be calculated in near real-time as it only needs data from one
station and its baseline derivation is optimised for this purpose (as described in section
3.2.3). Though it is well correlated with solar wind parameters, various sources can
contribute to the PC index.

3.1.3 Ring Current Indices
The Disturbance Time Index (Dst) was introduced by Sugiura (1964) to monitor the
axially symmetric part of the ring current that induces the depression of the horizontal
magnetic component. It is endorsed by IAGA and derived from the four observatories in
figure 2.14 that are sufficiently far from the EEJ and auroral zones, see figure 3.4 middle
right panel. The full dataset is available at dx.doi.org/10.17593/14515-74000. Its baseline
derivation takes into account the main field and the solar quiet variations derived during
the five quietest days of the month, the Q-days (see section 3.2.2). However, with its time
resolution of one hour, it does not allow studies for shorter lived phenomena and related
features.

The provisional SYM-H index with time resolution of 1-minute is based on 6 obser-
vatories, see figure 3.4 lower right panel, with the idea to provide a better description
of the symmetric part of the ring current. Analogously, the ASY-H is proposed to track
the asymmetric part of the ring current. Their derivation is described in Iyemori (1990)

https://dx.doi.org/10.17593/15031-54800
https://doi.org/10.11581/DTU:00000057
https://dx.doi.org/10.17593/14515-74000
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and in the technical report Iyemori, Takeda, Nose, Odagi, and Toh (2010). The baseline
includes the main field and the Sq field, similar to that of the Dst index. The SYM-H
is commonly accepted and used as the high-temporal resolution Dst index. Naturally,
some differences arise and need to be kept in mind when doing so, especially for stronger
disturbances (Wanliss & Showalter, 2006).

As the main feature of geomagnetic storms is the enhancement of the ring current, the
Dst index is used in its definition (see section 2.4.2) and together with the SYM-H index
they act as some of the most used proxies for space weather studies. Though similar, the
definition of storm phases and corresponding start- and end-times of geomagnetic storms
vary from study to study, some of which are presented in the following.

Figure 3.2: Left: Definition of geomagnetic storm phases with the Dst index from Echer
et al. (2011). Right: Definition of geomagnetic storm phases with the SYM-H index from
Walach and Grocott (2019).

1. Echer et al. (2011)
The catalogue of Echer et al. (2011) covers a total of 1377 storms with peak Dst
below −50 nT between 1957 and 2008. They are used to investigate storm intensity
dependencies on solar cycle, annual variations and season to derive occurrence prob-
abilities. By analysing each storm manually, they separate individual storms from
complex events. Their initial phase starts at the highest positive value before the
minimum Dst and ends when Dst crosses zero. This zero-crossing also marks the
beginning of the main phase. The minimum Dst marks the end of the main phase.
As their study is concerned with the strengths of storms, they did not define the
end of recovery phases. Complex events are excluded, such that only single storm
signatures are in the catalogue. The full storm list is available on-demand from
the authors. On request, I received a catalogue with a total of 1516 storm entries
covering the years 1957 to 2019, of which 599 storms are between 1991 to 2019.

2. Ji, Moon, Gopalswamy, and Lee (2012)
The catalogue of Ji et al. (2012) covers a total of 63 geomagnetic storms with peak
minimum Dst below −100 nT between 1998 to 2006. They use this set of events
and solar wind data from the satellite ACE to compare several Dst forecast models
focusing on intense events with regards to amplitude and time of minimum Dst.
They define the start of the storm when there is a noticeable decrease of Dst after
an identified corresponding interplanetary shock in the solar wind data. The storm
end is defined as the time when Dst recovers above −50 nT.

3. Lu, Peng, Wang, Gu, and Zhao (2016)
The catalogue of Lu et al. (2016) covers a total of 80 intense geomagnetic storms
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with Dst below -100nT between 1995 to 2014. Similar to the one of Ji et al. (2012),
they use these events as the data set for Dst forecasts with artificial intelligence
algorithms. They define the start-time of the storm as the significant decrease of
the Dst value from a relatively stable state and the end-time as the recovery of Dst
above −50 nT.

4. Li and Yao (2020)
The catalogue of Li and Yao (2020) covers a total of 95 storms with minimum peak
Dst below −30 nT between 1998 and 2011. From satellite data, they identify ICMEs
and their properties to study associated geoeffectiveness. The storm list contains
events with the corresponding geomagnetic response in Dst. Complex events are
excluded. The start time of the main phase is defined as the maximum Dst value
occurring between the ICME shock and the minimum Dst Dstmin. No initial phase
is determined as they argue that not all ICMEs show a clear initial phase in Dst.
The end of the main phase and the start of the recovery phase is determined by the
minimum Dst. In this study, the recovery phase end is defined as the Dst recovering
above 10% of Dstmin for storms with Dstmin >−60 nT or 30% for Dstmin ≤−60 nT.

5. Walach and Grocott (2019)
The catalogue of Walach and Grocott (2019) contains a total of 48 storms between
1997 to 2008 with the condition of SYM-H being below −80 nT. They use this list
of storms to study ionospheric convection during extreme storm conditions. The
minimum SYM-H value marks the beginning of the recovery phase and the end of
the main phase. The end of the recovery phase is marked by the crossing of the
quiet level which is chosen as −15 nT. The beginning of the main phase is defined
as the last point when SYM-H crosses the quiet level prior to the main phase end.
The beginning of the initial phase is marked as the point when SYM-H crosses the
quiet level, coming from positive values.

For both indices it cannot be excluded that they contain contributions from other
current systems. As they are averaged over longitude, they do not give information about
local variations. When used as a proxy for ring current energy, the SYM-H has shown to
overestimate the energy input by up to a factor of 4 and shifts of the maximum energy
content by 3 to 9 hours due to included contributions of tail currents and substorm activity
(Sandhu, Rae, & Walach, 2021).

Due to their importance in characterising storm activity, the literature shows increased
interest in the forecast of both, the Dst and SYM-H indices, also with artificial intelligence
methods, see e.g. Ji et al. (2012); Lu et al. (2016); Bhaskar and Vichare (2019); Laperre,
Amaya, and Lapenta (2020); Siciliano et al. (2021).

3.1.4 Further Indices
Within the last decade, the availability of magnetic data has been significantly enlarged.
Ground infrastructure has been updated, leading to an increasing amount of observatories
that provide high quality and high cadence magnetic data, while space observations have
been continuously improving to provide data in a reliable and more pertinent way. The
consequence of this progress is reflected in the numerous studies that propose indices with
higher temporal and spatial resolutions. Some examples include the SuperMAG based
auroral electrojet (SME) and ring current indices (SMR) (Newell & Gjerloev, 2011, 2012)
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with time resolution of 1-minute. The initial idea of tracking the corresponding current
systems holds, with the difference that the number of magnetic observatories used for
the derivation is increased and further indices for the description of local time zones are
provided. The baseline derivation differs from that of its traditional counterparts (see
section 3.2.5 for details). With the magnetic data provided by the SWARM mission,
the space-based indices Swarm-Dst, Swarm-ap and Swarm-AE were introduced recently
(Balasis, Papadimitriou, & Boutsi, 2019; Papadimitriou et al., 2021). As satellites provide
a latitudinal coverage, the data used to produce each of the indices needs to be constrained
to the appropriate latitudinal ranges. The removed baseline contains the main field as
derived from the CHAOS-6 model (Finlay et al., 2016) and a low-pass filter with cut-off
frequency of 4 hours. These space-derived indices show very good linear correlations with
ground-based indices and act as good addition to the description of the geomagnetic field’s
state.

3.1.5 The St. Patrick’s Day Storm of 2015 as Recorded by
Magnetic Indices

The St. Patrick’s Day storm that occurred between 17th and 18th of March 2015 was one
of the most intense space weather events of SC24. It is classified as ’Severe’ according to
the U.S. National Oceanic and Atmospheric Administration (NOAA)1 (Poppe, 2000). A
strong CME with southward IMF, together with a high-speed stream led to severe effects
on Earth. The event is well-studied in the literature (e.g. Wu et al. (2016)) including
the documentation of severe effects on the ionosphere (e.g. Nava et al. (2016); Astafyeva,
Zakharenkova, and Förster (2015); De Michelis et al. (2020)) and significant impacts
on satellite positioning (e.g. Jacobsen and Andalsvik (2016); Zakharenkova, Astafyeva,
and Cherniak (2016); Yang et al. (2020)). Aurora sightings were documented even in
mid-latitudes with Aurorasaurus2 (Case & MacDonald, 2015).

Figure 3.3 illustrates how this event manifested itself in various magnetic index re-
sponses showing the period between 14th to 22nd of March 2015, from top to bottom
(with their extreme value): Kp (8); am and aa (241 nT and 284 nT); Hp30 and Hp60 (8
and 8); AU and AL (664 nT and −2300 nT); AE and SME (2298 nT and 2877 nT); PCN
and PCS (15.5mV/m and 15mV/m); Dst, SYM-H and SMR (−222 nT, −234 nT and
−249 nT). The K-derived, polar cap and ring current indices indicate geomagnetically
calm days during March 14th and 15th, though elevated substorm activity is recorded in
the auroral electrojet index family and SME. On March 16th, a moderate event can be
identified that leads to slightly higher values in all indices. On 17th of March, at around
5am UT, all indices show a rapid increase, with the ring current indices indicating a clear
SSC followed by the storm-typical H depression. Strong values across all indices remain
for around 24 hours until 18th of March at midnight, which marks the end of the storm’s
main phase which features high substorm activity (AE) and a clear intensification of the
ring current (Dst, SYM-H). The auroral, polar cap and ring current indices show two
distinct peaks in activity during the main phase, the first one peaking at around 9.30am
UT with a succeeding calming of around 30 minutes. During March 18th, the ring cur-
rent indices indicate a slow recovery phase which is accompanied by slowly decreasing
substorm activity. The K-derived indices show a consistent decrease accordingly. The
slow recovery continues further until March 21st.

1swpc.noaa.gov/noaa-scales-explanation
2aurorasaurus.org/

https://www.swpc.noaa.gov/noaa-scales-explanation
https://aurorasaurus.org/
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Figure 3.3: Illustration of magnetic index responses to the St. Patrick’s Day Storm in
2015 during the period of 14th to 22nd of March. From top to bottom the indices are
Kp; am and aa; Hp30 and Hp60; AU and AL; AE and SME; PCN and PCS; Dst, SYM-H
and SMR.
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Figure 3.4: Location of observatories of networks for several indices: Kp, AE, aa, Dst,
am and SY M − H. (Taken from ISGI)
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This example illustrates how magnetic indices are essential for the quantification and
description of space weather events, in particular the responses of the various magneto-
spheric and ionospheric current systems.

3.2 Geomagnetic Baselines
Whether tracking the intensity of a dedicated current system or describing the general
state of the geomagnetic field, all indices have in common that they characterise the corre-
sponding irregular variations within field measurements. To do so, the contribution from
the source of interest has to be isolated within the geomagnetic field signal. Generally, this
is achieved by removing the geomagnetic baseline. Such a baseline is supposed to contain
all contributions from stable and quiet magnetic field sources and none from the source
of interest. Thus, after removing, the residuals contain solely information on the source
of interest, e.g. disturbances. In 1939, Bartels (1939) referred to this source separation
as K-variations, that contain the quiet sources and non-K variations, that contain distur-
bance - or irregular - source contributions. Bartels et al. (1939) defines the geomagnetic
baseline as

”... a smooth curve (a regular daily variation) to be expected for that element on a
magnetically quiet day, according to the season, the sunspot-cycle, and, in some cases,

the phase of the Moon”

which is assumed to encompass the solar daily variation, the lunar daily variation and
the after-effects of disturbances like recovery phases of the ring current. At the time,
trained observers identified these quiet curves on analogue magnetograms by hand. This
rather subjective definition was later made more concrete into a set of 7 practical rules by
Mayaud (1980) to support the objectivity of the baseline determination. The identification
of solar quiet current systems for mid-latitudinal observatories was explicitly included
within these rules. In particular due to the space era, our understanding of the near-
Earth environment and the associated current systems, together with their coupling to
the solar wind enhanced our understanding of the sources contributing to the geomagnetic
field. Nowadays, it is commonly accepted that a geomagnetic baseline includes the secular
variation, solar cycle induced variations and the solar quiet variations. However, up to this
date there is no qualitative ground truth on the shape of geomagnetic baselines and the
general guidelines from the past are still widely employed to justify baseline derivations.
As has been briefly indicated, each of the introduced index families uses a different method
for the determination of the baseline. This also implies, that each method will produce
different baselines, that lead to differences in the disturbance fields (i.e. the residuals
after removal of the dedicated baseline method). Ultimately, this results in differences in
the actual disturbance classification which needs to be taken into account when using the
indices. In the following some frequently used baseline methods are introduced.

3.2.1 Computer-produced Baseline Derivation for the K-Indices
Since their introduction in 1939, the K-indices still form the base in the production of
widely used K-derived geomagnetic indices for low- to mid-latitudes. With increasing
digitalisation, the need for faster, computer-aided production of the K-indices rose and as
a direct response a variety of algorithms were introduced. In 1991, at the International
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Union of Geodesy and Geophysics (IUGG) meeting in Vienna, available algorithms were
systematically investigated with regards of their accuracy in producing K-indices and
corresponding baselines (Menvielle, Papitashvili, Hakkinen, & Sucksdorff, 1995). The
algorithm from Sucksdorff, Pirjola, and Häkkinen (1991), referred to as the FMI method
(the abbreviation coming from Finnish Meteorological Institute), produced good enough
results for the continuation of computer-based K-indices3.

The baseline according to the FMI method is based on a regression over a sliding
window centred on the 24h UT day. For each UT hour with start-time t0 and end-time
t1, the mean over the interval (t0 − m, t1 + n) is calculated, with m and n being minutes.
The resulting 24 values (one per hour) are fitted by a 5th order harmonic curve which is
the baseline.

m is a fixed number of minutes, that depends upon the local time (LT): from 0-3 LT
m = 90min, from 3-6 LT m = 60min, from 6-18 LT m = 0min, from 18-21 m = 60min
and from 21-0LT m = 90min. n is derived in two steps:

1. Step: For each 3 hour UT interval (0-3UT, 3-6UT, etc.) the maximum and minimum
of the horizontal components are used to derive an initial K-value Kinit. With
ninit = K3.3

init, the hourly mean values for the intervals (t0 − m, t1 + ninit) are fitted
with a 5th order harmonic which gives the preliminary baseline.

2. Step: The preliminary baseline is then removed from the measurements. Per 3 hour
interval, the maximum and minimum of the residuals are used to determine the
preliminary K-index Kprelim. The final n value used for the actual interval length
of the K baseline derivation is defined as n := K3.3

prelim.

To deploy this method, measurements from the full UT day need to be available.

3.2.2 Baseline Derivation for the Dst Index
The baseline for the final Dst index takes into account the secular variation Hsecular and
the Sq variations Hsq. The two values are based upon the corresponding variations on
the five quietest days of each month, the Q-days (see chapter 3.1.1.2).

Hsecular is estimated by least-square fitting of the annual mean values of all Q-days,
during epoch τ that includes also the past four years as

Hsecular(τ) = A + Bτ + Cτ 2 . (3.1)

For each month, an Sq average is calculated based on the 5 Q-days per month. For a
year, this set of 12 Sq averages is expanded in a double Fourier series taking into account
the local time LT and the month M as

Hsq(LT, M) =
∑

j

∑
k

Ajk cos (jLT + αj) cos (kM + βk) . (3.2)

Therefore, to derive the final Dst index at time-step t, the measurements from at least the
4 years prior to t have to be available. This leads to long delays in the production of Dst.
The World Data Center for Geomagnetism in Kyoto provides provisional and real-time
(quicklook) Dst values. It needs to be kept in mind that these are derived from unverified
raw data and thus may contain inaccuracies.

3The computer script in C is available at space.fmi.fi/MAGN/K-index/FMI_method/K_index.h

https://space.fmi.fi/MAGN/K-index/FMI_method/K_index.h
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3.2.3 Baseline Derivation for the PC Indices
Janzhura and Troshichev (2008) introduced an automatic method for the determination
of the baseline for the two polar cap stations used for the PC indices. They use data from
quiet days to generate a statistical quiet variation Hq that is based on a 30-days running
window. Per UT hour, 120 sample quiet minutes are identified from the running window
and the mean of these represents Hq. The quiet samples are determined by two criteria:

1. dB/dt < γ for each 20-minute interval

2. |B(dt)−B(dt)| < β for the mean of the 20-minute B(dt) and the mean of the 20min
intervals B(dt) within the previous 3 hours

The determination of the thresholds γ and β depends upon the amount of points available
to determine Hq. Starting at γ = 2 nT/min and β = 2 nT, γ and β are iteratively increased
until 120 such quiet samples are found. The final mean is weighted according to the
number of iterations needed to achieve the threshold of 120 samples. This mean is used
as a baseline on days from which it is generated. On other and thus disturbed days, the
baseline from the identified quiet days is interpolated. This approach makes it possible to
project the baseline up to 20 days in advance by extrapolating Hq in amplitude. The phase
is taken as constant, as no important phase changes were found in their observations.

Therefore the PC method can be used as a running method to provide near-real time
baselines for the two polar cap stations.

3.2.4 IMAGE Method
Van De Kamp (2013) introduced a baseline derivation for observatories that are part of
the International Monitor for Auroral Geomagnetic Effects (IMAGE) in Scandinavia with
the goal of studying high-latitude ionospheric currents, especially auroral electrojets. The
network contains a total of 32 magnetometers with geographic latitudes ranging from 58◦

to 79◦ which deliver data in 10-seconds resolution.
This baseline does not only include the long-term trend and diurnal variations, but also

discontinuities in magnetometer measurements. When magnetometer data does not come
from well-controlled and stable instrumentation, occasional artificial discontinuities may
occur that can affect the baseline. In the first step of the IMAGE method, automatically
identified jumps are investigated and removed manually accordingly. The long-term trend
and the daily variations are based on identified quiet and disturbed days. To identify quiet
days, each UT hour is fit by a straight line which is removed from the measurements.
From these residuals the standard deviation σ is calculated. The maximum σmax of all
the hourly σs is used to describe the level of disturbance for the corresponding UT day.
The day with the smallest σmax is marked as the quietest day of the month. To guarantee
real quietness, the smallest σmax has to additionally be below an empirically identified
threshold. The optimal threshold is derived by visual inspection from the station Abisko
(ABK), nearby Kiruna in Sweden, and then adjusted empirically for other stations in
relation to ABK. The diurnal baseline for a quiet day consists of the 7 lowest harmonics
of the fast-fourier transform (FFT) applied on the data from the quiet day. For non-quiet
days, the curves from adjacent quiet days are interpolated. This can also be applied when
there is no quiet day found in a month or for longer periods. The long-term baseline is
taken as the simple median of the UT day if the day is not disturbed. The categorisation
with disturbed is done analogously to the quiet determination: σmax has to be above
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an empirically threshold. In this case the long-term trend for the UT day is interpolated
from adjacent non-disturbed days. The full baseline is then the superposition of the jump,
long-term and diurnal baselines.

The baseline is derived for each station and each component separately, and thus
each of the manual steps listed above (jump verification, threshold determination) have
to be done per station and per component. This leads to the baseline determination
being time-consuming and only applicable for the considered time-interval. Hence, it
is not applicable for real-time applications. However, by removing the jump baseline,
the IMAGE method gives access to data from remote and therefore harder to maintain
equipment, which is a common condition in auroral latitudes. This increases spatial
distribution of measurements for space weather studies.

3.2.5 SuperMAG Method
Gjerloev (2012) introduced a baseline derivation method that is used for the SuperMAG
indices. The very first step of this method is to rotate magnetometer measurements into
a specific local magnetic coordinate system. The rotation angle is determined by an arbi-
trarily defined time-dependent declination angle based on the horizontal field components,
smoothed over 17 days.

The long-term trend and the diurnal variations are included in the baseline. For the
diurnal variations, the mode (i.e. the value with the highest occurrence rate) for each day
is removed from the measurements. For each 30 minute interval, the mode of the residuals
of the day in question, together with its preceding and succeeding days is determined.
The amount of days surrounding the day of interest depends upon the fluctuations within
components X, Y , Z and magnetic latitude of the employed magnetometer. A cubic
convolution interpolation method is applied on the weighted half hourly mode values to
derive the diurnal variations. The weights depend upon the amount of days used. For the
yearly trend the mode over the past 17 days for each day is generated. A weighted smooth-
ing procedure is then applied on the series of modes to determine the long-term trend.
The weighted smoothing procedure depends upon the fluctuations in the instantaneous
measurements and from the previous eight days and differs for each of the components.
Lastly, from the residuals (difference between measurements and diurnal variations and
yearly trend) a station specific offset is determined. This offset is derived as the mode of
the residuals during Q-days and shows clear dependencies on magnetic latitude.

The final SuperMAG baseline is comprised of the diurnal variations, the yearly trend
and the residual offset.

For the SuperMAG method, no manual steps have to be performed. However, as
it needs information from surrounding days, it cannot be applied in real-time, nor is
it clear how many following days are needed to produce the mode for the 30min inter-
val. Additionally, the knowledge of the magnetic coordinates of the measurements are a
prerequisite.

3.3 Motivation for this Work
Each of the introduced baseline methods are being actively used with each of them bring-
ing their own advantages and disadvantages.

With the somewhat loose definition of what a geomagnetic baseline actually is, it
is not trivial to quantify differing baselines and tell whether one is more correct than
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another. One justification for a baseline is given by Van De Kamp (2013) comparing the
IMAGE method with the SuperMAG method and argues that both are very similar and
thus can both be employed. The common consensus that seems to have been establishing
itself over the past years is, however, that a baseline is made up of the quiet sources
that comprise the long-term trend and some typical diurnal variations. This approach
is explicitly followed by the Dst, IMAGE and SuperMAG methods. Though, each of
these motivates its own way of derivation to ultimately contain the quiet sources, detailed
investigations of the actually contained sources is widely absent. Gjerloev (2012) and
Van De Kamp (2013) show the spectra of the baseline and argue that the 24h harmonics
are sufficiently represented and thus include the diurnal quiet variations. Many of the
methods actually use some kind of statistical averaging to describe quiet variations. In
the case of methods applied to mid-latitudes, this leads to an averaging of the Sq current
footprints fully neglecting its intrinsic D2D variability.

A common challenge faced by all methods is the identification of measurements from
quiet variations that are used as proxies for the baseline. Using the official Q-days as
derived from the K-indices as described in chapter 3.1.1.2 or any other arbitrarily chosen
UT quiet days come with a series of limitations and caveats that have been extensively
discussed in e.g. Mayaud (1980); Joselyn (1989); Menvielle et al. (1995); Janzhura and
Troshichev (2008); Gjerloev (2012); Van De Kamp (2013). Some of these include

• Disturbances can be locally and temporally confined such that they are missed when
looking at the UT day

• Quiet days that are based on indices which need some kind of quiet criteria is a
circular argumentation

• Using the average of any number of quiet UT days within a certain range in order
to derive statistical properties of quiet variations is arbitrary

Thus, methods that make use of and produce baselines per UT day like the K-, Dst and
PC method, may not be able to accurately describe disturbance influences.

The idea of having a computer-based derivation of baselines for the K-indices came
from the need to provide them in a timely and automatic manner without manual in-
tervention. Certainly, for any near real-time application this requirement has to hold
too. This implies that the usage of future measurements or further input parameters like
magnetic locations cannot be incorporated into the baseline derivation, as is the case for
K, Dst and SuperMAG methods. Any manual intervention that is needed for baseline
derivation steps like the removal of outliers or the derivation of thresholds are also not
suitable for real-time applications.

The ultimate goal of this work is to present a baseline which contains the sources of
the quiet geomagnetic field and which implementation is fully automated and thus may be
employed in near real-time, overcoming the discussed short-comings. For such a baseline
derivation the following chapters

1. describe the automatic derivation of the baseline during quiet periods
2. investigate and analyse associated sources that contribute to the quiet baseline
3. introduce an algorithm to deduce quiet variations during disturbed periods for the

baseline
4. explore the deployment of artificial intelligence for baseline derivation.
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A Novel Geomagnetic Baseline
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Chapter 4

Generation of the Filter Baseline

The ultimate goal is to derive a geomagnetic baseline that can be used for magnetic indices
in mid-latitudinal regions. The main purpose of a geomagnetic baseline is to separate long-
term and recurrent contributions from short-lived and sporadic magnetic activity within
geomagnetic field data. Based on certain frequencies, the contributions can be related to
certain sources as was shown and discussed in figure 2.16. With this premise, we introduce
the approach of temporal filters to determine baselines in an automatic manner.

At first, the description of and considerations about the leveraged data-set used in this
work is given, followed by a short excursion of using temporal filters for signal analysis.
This enables us to define a baseline resulting from temporal filtering, which we will refer
to as the Filter Baseline. Finally, we discuss some computational aspects of this approach.

4.1 Usage of Magnetic Observatory Data
In chapter 3, we saw that magnetic indices are usually derived from ground magnetic field
measurements. For this work, data provided by the INTERMAGNET network ensuring
high quality data that is delivered in minute resolution is used. To recall, the data comes
as a vector in the local NED coordinate system with components X, Y , Z (see chapter
2.6.3). As they hold the most important magnetospheric and ionospheric information and
as is common for most indices, we use the horizontal components X and Y . The considered
time span covers 29 years and starts in 1991 when the network was founded and ends in
2019 as definitive data was available at the start of this PhD work. During this period
a total of 149 observatories delivered data for at least one year to the INTERMAGNET
database. The location of these observatories is depicted in figure 4.1. The detailed list
of observatories and their participation in INTERMAGNET can be found in appendix A
together with an enlarged map of their geographic locations.

We want to derive a baseline for observatories in mid-latitudinal regions at which the
auroral and equatorial electrojets only play a secondary role. Therefore, the used observa-
tories are constrained to magnetic latitudes from 20◦ to 60◦ degrees in both hemispheres,
using magnetic ED coordinates (see chapter 2.6.3). In figure 4.1 stations at magnetic
mid-latitudes in the northern hemisphere are indicated in blue and in the southern hemi-
sphere in red. Stations that are outside of the boundaries are indicated in grey. From
this map, it is clear that the distribution is heavily weighted towards central Europe.

Presenting the results of this work for each of the considered stations, which includes
the generation of the filter baseline and the subsequent analysis, would result in a story-
book that bursts the page limits of a doctoral thesis. Rather, the results for all considered
stations have been exhaustively analysed and reviewed and are available upon request.
Further in this work, the performed analysis and investigations will be illustrated by a set
of carefully selected observatories. The choice is based on the length of availability, homo-
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Figure 4.1: A geographic map showing INTERMAGNET stations which delivered data
for at least one year between 1991 - 2019. Blue and red corresponds to stations with
absolute magnetic ED latitude between 20◦ and 60◦ in the northern (blue) and southern
(red) hemispheres, respectively. Grey corresponds to stations outside of these boundaries,
i.e. equatorial and polar regions.

geneity of the data and on the location within the mid-latitudinal range. The magnetic
observatory Chambon-la-Forêt (CLF) in France, Europe, is part of INTERMAGNET for
the entire considered 29 years period having minor down-times (total of 0.66‰). It is
located at 48.025°N which corresponds to magnetic ED latitude 43.3◦ to 42.7◦ between
1991 and 2019 and is thus centrally positioned within the considered latitude range of 20◦

to 60◦. Furthermore, CLF is close to several other magnetic observatories. Comparison
with them enables the identification and ruling-out of potential local effects. Thus, the
main observatory to illustrate results is CLF in this work. When larger scale phenomena
are investigated, additional observatories are illustrated when appropriate. Their choice
is based on similar criteria and additional criteria are outlined when applicable. The
definitive dataset from CLF can be accessed under the BCMT Data Repository (BCMT,
2023).

4.2 Time Domain Filtering
Temporal or time-domain filtering is a type of digital signal processing that modifies
time-series according to frequencies. They are used to selectively amplify or attenuate
specific frequency components of a signal. Filters are used for e.g. the removal of noise,
enhancement of signal clarity or extraction of specific features and patterns.



4.3. DEFINITION OF THE FILTER BASELINE 67

A filter consists of an input signal, an output signal (the response) and a unit sample
response (transfer function). In practice, ideal filters are not realisable and numerical
filters that approximate the ideal ones as closely as needed are designed.

A temporal filter is realised by the convolution of a signal with a filter kernel that
defines desired temporal characteristics. The filter kernel specifies the weights to be
applied to the signal at each time step, and can be designed to achieve a variety of
objectives, such as low-pass, high-pass, band-pass, or band-stop filtering. Some examples
of time-domain filters include moving average filters, which smooth a signal by averaging
neighbouring samples, or digital Butterworth filters, which are designed to provide a flat
frequency response in the passband and steep roll-off in the stopband. The finite impulse
response (FIR) filters are digital signal processing filters that operate on discrete-time
signals. These are characterized by their impulse response, which is a weighted sum of
the input signal and its past values, where the weights are defined by a finite-length
sequence of coefficients. One of the key advantages of FIR filters is that they are always
stable, meaning that their output will not grow indefinitely or oscillate over time. They
can also be designed to have linear phase response, which means that the filter introduces
a constant time delay across all frequency components of the input signal which preserves
the signal’s phase relationships.

Designing filters with the desired frequency response and multiplying it with a rect-
angular window sequence yields relatively large oscillations and ripples near the band
edge of the filter. The choice of an appropriate window function that decays toward zero
gradually can help this problem. Several windows exist, among which the Hamming win-
dow is used to extract single channels, as signals close to the edge of the passband are
already well suppressed. Filtering is a standard signal analysis tools and details about
these methods can be found in various textbooks, e.g. Hamming (1977); Proakis and
Manolakis (2006).

4.3 Definition of the Filter Baseline
Magnetic field measurements can be treated as discrete time signals and as such they can
be represented in the time-domain, as well as in the frequency domain. The amplitude-
frequency spectrum of geomagnetic field measurements of both components, X and Y at
CLF for the entire period between 1991 to 2019 is presented in the upper panels of figure
4.2 in dark blue. The lower panels show the spectra of five filters, that are introduced
shortly. The main external quiet-time contributions in mid-latitudes are due to the solar
quiet current systems which operate on periods of 24h, 12h, 8h and 6h, which effect is
clearly observed as peaks in figure 4.2. Additionally to these (sub-)diurnal variations, a
smooth change of the Earth’s magnetic field is induced by sources acting above the 24
hours timescales (including Earth’s dynamo that is responsible for the secular variation).
In previous chapters and figure 2.16, we saw that it is possible to assign main frequency
regimes to the various sources of the geomagnetic field. Using this assumption, we perform
a frequency analysis of the signal with the goal of isolating source contributions. This
can be accomplished by temporal filters as introduced in the previous section. Temporal
filters have been employed in various studies to remove the diurnal recurrent variations
from ground measurements, see for example Behannon and Ness (1966a, 1966b); Bhargava
and Yacob (1970); Jadhav, Rajaram, and Rajaram (2002). Please note, that a complete
separation of sources cannot be achieved by considering exclusively frequency regimes.
Its limitation will be discussed at a later point (see chapter 5.3 and 5.4).
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Figure 4.2: Amplitude-frequency spectra of the filters for the X and Y components at
CLF for the entire period between 1991 to 2019 in dark-blue in the upper two panels.
The lower two panels show the spectra of each of the temporal filter responses: Long-term
filters (orange), diurnal (yellow), semi-diurnal (violet), 8h (green), 6h (bright blue) and
the remaining signal (residuals in grey).

For the separation of sources, we use FIR filters with Hamming window on a centered
three-days data sample, i.e. for timestep t data from t − 1.5days to t + 1.5days is taken.
Five filters are defined: one low-pass and four band-pass as summarised in table 4.1. The
frequency regimes for the five filters are determined according to the following consider-
ations, see also Haberle et al. (2022). To extract long-term variations, we use a low-pass
filter with cut-off frequency of 7.716×10−6 Hz corresponding to variations above 36 hours
within the signal. For the four (sub-)diurnal frequencies, we eventually use band-pass
filters that are implemented with the help of low-pass filters. To extract the 24-hour
variations, we apply a low-pass filter with cut-off frequency of 1/24h = 1.1574 × 10−5 Hz
on the signal, from which we subtract the output of the long-term filter. The 12-hour
variations are then computed as the difference between the low-pass filter with cut-off
frequency of 1/12h = 2.3148 × 10−5 Hz applied on the signal from which we substract
the sum of the outputs of the 24h band-pass and the long-term filter. The 8h and 6h
band-pass filters are implemented analogously.

The filters are applied separately to each of the horizontal components X and Y of
the geomagnetic field measurements. In the following, we label the magnetic observatory
measurements in capital X, Y , and the filter responses in lower-case x, y with the corre-
sponding period range as subscript as indicated in table 4.1. The lower panels of figure
4.2 show the amplitude-frequency spectrum of each of the filters during 1991-2019. As
designed, each (sub-)diurnal filter contains the related peak frequencies, e.g. the semi-
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diurnal filter in violet contains the peak at 12 hours, and the long-term filter contains
lower frequencies. Please take notice of the soft edges for the (diurnal) band-pass filters
which is achieved by applying the Hamming window.

Table 4.1: Finite impulse response (FIR) filters, corresponding passing frequencies and
their notation. The sum of the five filter responses forms the baselines xF B and yF B.
(Haberle et al., 2022)

Signal Contribution Pass Frequencies Notation
Long-Term below 7.716 × 10−6 Hz x>24 y>24

Diurnal 7.716 × 10−6 to 1.1574 × 10−5 Hz x24 y24
Semi-Diurnal 1.1574 × 10−5 to 2.3148 × 10−5 Hz x12 y12

8 hours 2.3148 × 10−5 to 3.4722 × 10−5 Hz x8 y8
6 hours 3.4722 × 10−5 to 4.6296 × 10−5 Hz x6 y6

Returning to the assumption that these frequency regimes are the main contributions
to the measured quiet magnetic field and knowing that sources superpose each other, we
can define a baseline based on the filter responses:

xF B = x>24 + x24 + x12 + x8 + x6 for X, and (4.1)
yF B = y>24 + y24 + y12 + y8 + y6 for Y (4.2)

We will refer to (4.1) and (4.2) as the Filter Baseline. The filter responses in the time-
domain are demonstrated in figure 4.3 of X and Y at CLF in the five upper panels.
The filter baseline is demonstrated in the sixth panel (in red) plotted together with the
measurements (in black). The residuals are calculated as the difference between the
measurements and the filter baseline, illustrated in the bottom panel.

4.4 Computational Aspects

4.4.1 High Performance Computing
Generating one filter value at time-step t, i.e. applying one of the five filters introduced
before on the centred 3-days window around t, takes 0.7 s using an off-the-shelf computer
(COTS) with Intel(R) Core(TM) i9-9880H CPU with 2.30GHz. This results in a total
of 5 × 0.7 s = 3.5 s that is needed to generate the full filter baseline at time-step t.
Implications for real-time applications are discussed in the next subsection.

In order to evaluate and analyse the introduced filter approach, a statistically sig-
nificant amount of data needs to be available. For the purpose of this thesis, the data
from 149 observatories within 1991 to 2019 was used and for each time-step t (in minute
resolution) each of the five filters had to be applied. These are more than 15 million filter
operations for a station that delivered 29 years worth of data. A standard CPU is just
not fast enough to treat the entire database in a practicable manner. In order to provide
remedy to this issue, high performance computing was leveraged. Graphical Processing
Units (GPUs) that are equipped with powerful cores can be used for more general tasks
than only graphics rendering. Being equipped with a large number of cores and on-board
memory capacity, they are used for tasks that can be parallelised. Libraries for the usage
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Figure 4.3: Decomposition of X (left) and Y (right) measurements at CLF over 6 CK-days
between 16th to 22nd of July 2006. From top to bottom: the five consecutive FIR filter
responses; comparison of measured magnetic field component (black) with the determined
quiet baseline (red); residuals calculated as difference between measurements and filter
baseline. (Haberle et al. (2022))

of GPUs are mainly written in CUDA (Compute Unified Device Architecture) for Nvidia
cards and OpenCL (Open Computing Language) for both AMD and Nvidia cards and
are based on C or Fortran. By parallelising the task at hand, a GPU can treat multiple
operations at a fraction of time than a standard CPU would need. Applying filters to
signals is a flagship example of processes that can be parallelised, as the filter can be ap-
plied at each time-step independently. Therefore, the filtering of the database is done on
a GPU, more precisely an Nvidia Quadro 2000T and programmed in its native language
CUDA fortran. This application of high performance computing allows to generate the
entire filtered database within 4 hours. This enables the extension of the database with
additional magnetic field data in the future and also provides the option of re-computation
for differing filter designs (e.g. enlarging the three days filter window).
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4.4.2 Real-time Applications
As already stated, generating one filter value at time-step t0, i.e. applying one of the five
filters introduced before on the centered 3-days window around t0, takes 0.7 s using the
aforementioned COTS. This makes a total of 5 × 0.7 s = 3.5 s that is needed to generate
the full filter baseline at t0. No further information like location of the observatory or
handled time-period needs to be provided in order to generate the frequency responses.
This means that for the computation of the filter baseline, the architecture and power of
the used machine is the deciding factor. As we use minute data, the 3.5 s from COTS,
however, do not pose strong restrictions on the potential real-time application. The more
relevant limitation for any real-time application is the fact that a centered window of 3
days is used. Such that, in order to generate a filter value at time-step t, not only the
past 1.5 days of the signal need to be known, but also the future 1.5 days.

On a more physical note, as we will also see later: using only the filter approach
doesn’t separate sources fully. A single source can act on various frequency regimes of
the spectrum. Disturbances, like geomagnetic storms, have an inhomogeneous duration
in time which can exceed the chosen three-days filter window and in general disturbances
that last more than 6 hours can influence any of the filter responses. Further details on
these limitations is discussed in succeeding chapters.
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Chapter 5

Sources within the Filter Baseline

In the previous chapter, we motivated the derivation of the filter baseline to contain
sources of the quiet geomagnetic field, i.e. long-term and solar quiet variations. This
chapter is devoted to the identification of sources which contributions can actually be
recognised within the baseline. I present the behaviour of the filter outputs (responses)
and investigate their variations, giving thorough analysis. I start with the discussion of
sources within the long-term filter and then continue to the diurnal and sub-diurnal filters.
Eventually, I discuss disturbance signatures.

5.1 Long-term Filter
The long-term filter is a low-pass filter with cut-off period of 36 hours, i.e. it preserves
variations with periods above 36 hours. The spectrum of its output is depicted in 4.2
(orange) and the variations in the time domain in figure 5.1. The upper two panels show
the filter output for the X and Y components at CLF over the entire period of 29 years
and the lower two panels present a zoomed-in view on 3-months. Starting with the upper
panels, x>24 shows a steady increase from approximately 20 700 to 21 270 nT which is a
total increase of 570 nT, with shorter fluctuations of up to 300 nT. Similarly, y>24 shows
a steady, but steeper increase of 1500 nT (from around −1100 to 400 nT), transitioning
from negative to positive values around 2014, with shorter fluctuations in the order of
tens of nanotesla.

From previous chapters we learned that the configuration of Earth’s internal magnetic
field slowly changes over time. This smooth drift can be also observed in the filter outputs.
As the magnetic pole moves closer to Europe, we expect the magnetic field strength
at CLF to slowly increase accordingly as it drifts towards higher magnetic latitudes.
This increase in field strength can be observed in each component of the magnetic field
measured at CLF and in particular here in both x>24 and y>24 (see the upper panels of
Figure 5.1). The magnitude of y>24 is lower than that of x>24 as the magnetic meridian
is close to geographic North (equal in 2014 when Y = 0 and thus declination was zero
at that point). To see if the outputs are in agreement with the observed and modeled
secular variation, we compare them with the latest IGRF-13 model (Alken et al., 2021).
In figure 5.2 the results for two observatories that are in mid-latitudes, CLF in Europe
and Fredericksburg (FRD) in North America, are presented. The IGRF evolution of
both horizontal magnetic components is depicted in red and its general trend follows
that of the filter outputs. For most of the components, however, a fairly constant offset
can be observed. As described in chapter 2.5.2, the crust induces a certain, constant
magnetic field bias that depends upon the local properties of the ground. Adding the
mean biases from Verbanac et al. (2015) from table 2.1 for CLF and FRD to the IGRF
model results in the yellow line in figure 5.2. We see that, now, the long-term filters are
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Figure 5.1: Responses of the long-term filters x>24 and y>24 for CLF. The upper panels
depict the general trend between 1991 and 2019, the lower panel presents a zoomed-in
view of 3 months, whereby the grey indicates the magnetic field components X and Y

in good agreement with the model including the crustal bias. However, the filter output
is less smooth than the IGRF-13 model. To quantify the linear correlation between the
filter output and the IGRF-13 model plus crustal bias, we use the Pearson correlation
coefficient. The Pearson correlation coefficient is a statistical measure that assesses the
linear relationship between two continuous variables. It ranges from -1 to 1. A value
of -1 indicates a perfect negative linear relationship between the two variables, where as
one variable increases, the other decreases by a similar amount. A value of 1 indicates
a perfect positive linear relationship between the two variables, where as one variable
increases, the other increases by a similar amount. A value of 0 indicates no linear
relationship between the two variables. The Pearson correlation coefficient is calculated
by dividing the covariance between the two variables by the product of their standard
deviations. For each station and each component the linear correlation is above 0.99,
from which we can infer that the secular variation and the crustal bias are contained
within the long-term filter response.

Apart from the general trend, the long-term filter also contains shorter variations.
A clear seasonal dependency can be recognised. The lower panels of 5.1 present the
zoomed-in view on a three-months period and display variations with periods of 27-days.
These variations are very clear for the X component, and less, but still present, for the Y
component. The observed 27-days variation is in agreement with Briggs (1984); Jakowski,
Fichtelmann, and Jungstand (1991); Van De Kamp (2013); Poblet and Azpilicueta (2018)
who attribute these to either the solar rotation period or tidal variations that arise from
the interaction between solar-quiet and lunar tides. However, we cannot exclude the
possibility that these variations are a superposition of sources enhancing each other within
the same frequency range. Furthermore, y>24 shows less short-time variability than x>24,
as it is proportionally less affected by fluctuations from external sources. Here I would like
to point out that signatures of geomagnetic storms are identifiable within the long-term
filters. For example, the famous Halloween storms can be clearly identified in both x>24
and y>24 as strong dips at the end of 2003. In fact, the long-term filter can be associated
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Figure 5.2: Comparison of the long-term filter (in blue) with the IGRF model (in red)
for two stations CLF (top) and FRD (bottom). The crustal bias is added to the IGRF
model in yellow.

with the Dst index to a certain extent, as we will see in chapter 6.1.1.

5.2 Diurnal and Sub-Diurnal Filters
This section presents an extensive analysis of the diurnal and sub-diurnal filters. To
commence with, the (sub-)diurnal filter responses are discussed individually in relation to
solar cycle, season and local time. This is followed by further analysis with the purpose of
identifying the footprints of the Sq current system within the combination of the diurnal
and sub-diurnal responses. Subsequently, we will try to anticipate and reproduce the quiet
variations on the basis of observed solar cycle-, seasonal- and local time dependencies and
the filter responses themselves. We will see that the key for the description of quiet
variations steams from a pertinent consideration of the day-to-day variability.

5.2.1 Variations within the (Sub-)Diurnal Filter Responses
In this subsection, we look at global patterns of the 24h, 12h, 8h and 6h filter responses
of the X and Y components at CLF and the combined (sub-)diurnal signal containing
the sum of the four filters:

xD = x24 + x12 + x8 + x6 (5.1)
yD = y24 + y12 + y8 + y6 . (5.2)

They are presented in Figures 5.3 and 5.4 with respect to local time and day of year,
alongside the F10.7 index in the first panel to facilitate comparisons with solar cycle
phases. We superimposed the occurrence of sunrise and sunset at 110 km altitude on
corresponding panels as (lower and upper) black dashed lines. For demonstration pur-
poses, we illustrate dependencies on local time, season and solar activity corresponding
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to variable solar irradiation conditions over the solar cycle 23 from 1998 to 2008. The
analogue figures for the entire period 1991-2019 can be found in appendix B.

Let us start with the individual filter responses. They are presented in the four central
panels of Figures 5.3 and 5.4. Periodical patterns can be observed with respect to day-
of-year and, more specifically, season and local time. Each filter response is a sinus like
function with period P and thus has one maximum and one minimum per period. This
can be clearly observed as the filter responses of x24, y24 have one maximum and minimum
per day, the 12h filters have two, the 8h have three and the 6h filters have four.

For the X component (figure 5.3), the filter with the highest amplitude is clearly x24,
followed by x12, while x8 and x6 have a noticeably smaller amplitude in comparison. The
intensity of all filters follows the solar cycle smoothly. Generally, during solar maximum
(around 2002) amplitudes are the highest and decrease to lower values during solar min-
imum (around 2008). Moving on to seasonal dependencies, the intensity of the filters is
higher during summer than during winter months. For x8 and x6 the amplitude almost
diminishes to values below ±5 nT. In x24, we see a clear morning crest phased with the
local sunrise (transition from positive to negative values near the lower dashed line) and
enhanced activity during summer months after sunset (transition of negative to positive
values near the upper dashed line). Also the sub-diurnal filters respond to sunrise (lower
dashed lines), around which each of them features positive activity. In general, they seem
rather unaffected by sunset (upper dashed lines).

For the Y component in figure 5.4, the diurnal y24 and semi-diurnal y12 are rather
comparable in intensity and y8, y6 play a secondary role. Again, the intensity of all
filters follows the solar cycle smoothly with higher amplitudes during solar maximum
than minimum. Likewise, the seasonal dependency is very dominant. For y24, y12 and y8
the amplitudes are significantly higher during summer than during winter months. The
amplitudes during winter reduce considerably, especially for y8 and y6. Interestingly, y6
has elevated amplitudes during equinoxes. In contrast to x24, y24 activity is phased with
sunset, marking more or less the end of negative values (transitioning from negative to
values around and above zero near the upper dashed line) and enhanced activity during
summer sunrise (lower dashed line). The semi-diurnal y12 shows similarities to x24: it is
phased with sunrise (transition from negative to positive values near the lower dashed
line) and increased positive values during summer months during sunset (upper dashed
line). Some connection between sunrise and activity in y8 and y6 can be identified, but
their amplitudes are consistently smaller, as discussed before.

I would like to draw the attention to the colour-scales of the two figures. For the Y
component in figure 5.4 it ranges from -30 to 30 nT, whereby the one of the X component
in figure 5.3 ranges from -15 to 15 nT. Thus, the filter outputs contributing to the X
component are in general twice as less intense as the ones contributing to the Y compo-
nent. Overall, x24 > x12 > x8 > x6 and y24 ≥ y12 > y8 > y6 can be deduced as a rule of
thumb.

As already stated, comparisons to F10.7 (depicted in top panels) show that the general
trend of amplitudes for each filter response is aligned with the solar cycle phases. However,
the general trend can be disturbed from one day to the other by magnetospheric processes
enhancing the level of magnetic activity, especially during the maximum of the solar
cycle. Looking closely, the effects of the Halloween storms in the end of 2003 are in
fact identifiable (among others). This observation also holds for the combination of all
(sub-)diurnal filters xD and yD presented in the lowest panels of Figure 5.3 and 5.4 which
I will review now.
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Figure 5.3: Filter responses for SC23 (1998 to 2008) as function of solar local time (LT)
for the X component at CLF. From top to bottom: the F10.7 daily values in sfu; x24; x12;
x8; x6 and xD in nT. Dashed black lines indicate local time for sunrise (morning hours)
and sunset (evening hours). Periods with unavailable data are not represented and appear
as white vertical stripes. Note that the limits of the colour-scale range from −15 nT to
15 nT.

Figure 5.4: Analogue to Figure 5.3 for the Y component at CLF. From top to bottom:
the F10.7 daily values in sfu; y24; y12; y8; y6 and yD in nT. Note that the limits of the
colour-scale range from −30 nT to 30 nT.
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Similar to the individual filter outputs, yD is twice as intense as xD. For both, the
recurring patterns remain clear and highlight solar cycle and seasonal variations with
enhanced activity during solar maximum (around 2002) and summer months.

xD has a seasonal-dependent minimum around local noon which is surrounded by
two positive crests of activity around dawn and dusk (at least during summer). yD has
a maximum followed by a minimum, with the zero-crossing centred around local noon,
which shows no clear dependency on season. The activity increase is well phased with
sunrise (lower dashed line) for both combined signals, while the activity decrease is more
complex to associate with sunset (upper dashed line). The combined signal xD still
displays night-side activity especially during solar maximum, but also in summer nights
during solar minimum. A clear reduction of the activity is observed in the night time for
yD where it almost reaches zero, implying that all filter outputs added together cancel
out, showing that only the combination of the individual filters is physically meaningful.
Therefore, we will investigate further on xD and yD in the following.

To get an understanding of the dominant seasonal and local time variations of the
combined diurnal signal, we will use the method of superposed epoch analysis (SEA). It
is used to extract overarching characteristics within datasets and was first used by Chree
(1913) to investigate the relationship between sunspot occurrence and geomagnetic field
variations. First, individual events or periods are defined, aligned via a commonly defined
reference point and averaging gives information about general trends and patterns. We
generate one SEA per magnetic observatory and per component, xD and yD, in dependence
of solar local time and day of year (season) for magnetically quiet periods. Data on
magnetically very quiet CK48-days between 1991 and 2019, which total 3040 days, are
used to generate SEA, see chapter 3.1.1.6. Be reminded that the season can be described
by the solar longitude L ∈ (0◦, 360◦) which is derived from the position of Earth around
the Sun, whereby L = 0◦ defines spring equinox in the NH. The data is arranged into
bins of ∆L = 10◦ (vertical axis) and ∆LT = 10 min (horizontal axis). The value per bin
is derived as the average of all values that belong to the specific bin.

Here, I present four representative observatories at low and mid-latitudes, where the
signatures of equatorial and auroral electrojets are minimized. Additional to the criteria
from chapter 4.1, the stations are selected according to their location with respect to
the to-be-expected solar quiet current cells in both hemispheres. The SEA of further
stations with corresponding detailed discussions may be found in Haberle et al. (2022)
and additional stations are presented in appendix E.1.

Figure 5.5 presents the resulting SEA for two European observatories: CLF and San
Fernando (SFS), and two Australian observatories: Alice Springs (ASP) and Canberra
(CNB). Note that they are located in latitude from North to South in this order. The
black lines indicate the mean local sunrise (morning hours) and sunset (evening hours) at
an altitude of 110 km between 1991 and 2019. The upper left panels show the SEA for
CLF. The combined filter output yD describes a maximum during morning and a minimum
during afternoon hours, almost vanishing during night times throughout the year. The
increase in activity during morning hours strictly follows local sunrise, appearing earlier
during summer than during winter, while the activity decreases rather constantly in the
afternoon around 15h LT, except during winter solstice. In addition to the prolonged
activity, the signal intensity is stronger during summer (in NH L = 90◦) than during
winter (in NH L = 270◦). One of the most striking features is the relatively constant
zero-crossing of the activity around noon for yD. The pattern of xD is less clear. As noted
in the global patterns before, the dawn crest of activity is well phased with sunrise and
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Figure 5.5: Super-posed epoch analysis of the combined (sub-)diurnal filter responses xD

and yD, depending on local time and season for two European observatories (CLF, SFS)
and two Australian observatories (ASP, CNB), during magnetically quiet days. Black
lines indicate local sunrise (morning hours) and sunset (evening hours). Note that the
colour-scale is the same for all panels.

is present throughout the solar longitude, while the minimum and the dusk crest that
extends into the pre-midnight hours, are mainly observed during summer and autumn.

The magnetic observatory San Fernando (SFS) is located South of CLF at 36.7°N,
5.9°W (second row). Its yD shows a remarkably similar pattern as CLF, being well
phased with sunrise and to a lesser extent with sunset. The main difference to CLF lies
within its xD which describes a maximum around local noon from spring to autumn.
Around autumn equinox (L = 180◦), the maximum abruptly shifts to morning hours and
returns to noon hours shortly after winter solstice (L = 270◦). On the other hand, no
clear activity is observed during night, at dawn, or at dusk and only a rather limited
minimum is observed after dawn during summer.

The solar longitude describes the season reversely in each hemisphere, e.g. summer
in SH is at L = 270◦ and winter at L = 90◦. ASP is located in the SH at -23.76°S and
133.88°E nd its SEA is presented in the top right panels of Figure 5.5. The combined
signal yD describes a minimum in the morning hours and a maximum during afternoon
hours, as opposed to NH stations, with stronger amplitudes during summer. As for NH
observatories, yD is well phased with sunrise and additionally with sunset. The only
exception is during winter at sunrise, when a local and fainter maximum can be observed.
The combined signal xD is not as clearly phased with sunrise. During spring (L = 180◦)
and autumn equinox (L = 0◦), xD shows a maximum around noon. Similar to SFS in the
NH, the maximum shifts to morning hours shortly after autumn equinox and returns to
noon hours at spring equinox.

CNB is situated south of ASP at -35.32°S and 149.36°E and analogously shows a
remarkably similar behaviour in yD. xD has a minimum during day-light hours that
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shifts to later LT between autumn and spring equinox. During local winter, xD shows
also a local maximum in the morning hours. The analysis presented in Figure 5.5 is in
good agreement with the magnetic footprints one expects from the solar quiet current cells
flowing at an altitude of about 110 km above the magnetic observatories, i.e. the increase
of activity at sunrise, the inversion of the xD variations for locally close observatories (e.g.
CLF vs SFS, ASP vs CNB) and the inversion of the yD variations between observatories
located in different hemispheres (e.g. CLF vs CNB). This implies that the combined
filter output from the 24h, 12h, 8h and 6h filters are the major contributors to the Sq
currents. While the overall day-side patterns of xD and yD are clearly related to the Sq
currents, some further, but minor contributions can be attributed to other sources. These
are discussed in Haberle et al. (2022).

5.2.2 Reproducing the Quiet Variations from Diurnal and Semi-
Diurnal Filters

The previous results confirm that the (sub-)diurnal filters capture the signal of the Sq
current well which is one of the sources that we would like to be included in our baseline.
We also saw that there are strong dependencies of each individual filter response on solar
cycle, season and local time. We now pose the question whether it is possible to model
and anticipate the quiet variations with the help of the observed dependencies and the
individual filter responses.

As briefly mentioned and further discussed later (see chapter 5.3), storm signatures
are present in all filter responses and thus in the filter baseline, albeit these should not
be included. Additionally to an enhanced understanding of the quiet variations, recon-
structions will be useful during storm-time, as considered in later chapters (see chapter
6).

Before we start modelling, let us take into account two more considerations. The 24h
and 12h components, together with the 8h and 6h component are the major frequency
contributors to the solar quiet currents. The 8h and 6h component, however, account for
about half of that of the 24h and 12h component (see e.g. Campbell (2003)). This is
in agreement with our findings from the first part of 5.2.1 and figures 5.3, 5.4, where we
deduced that the main amplitude contributions are within diurnal and semi-diurnal filter
responses. Furthermore, a model can only be valid for one component of one observa-
tory. In the scope of this work, we will present and discuss the results for the magnetic
observatory Chambon-la-Forêt, as discussed in 4.1.

As such, we restrict the following modelling efforts to diurnal and semi-diurnal filter
responses, i.e. x24, x12 and y24, y12 and the resulting superposition

x24+12 = x24 + x12 (5.3)
y24+12 = y24 + y12 (5.4)

from measurements at CLF. It will become evident that this choice does not impact
the primary conclusion drawn from this subchapter. By convention, I will introduce the
general filter response z that covers both components and filter responses, and mark
respective models with this letter.

5.2.2.1 Seasonal and Local Time Dependencies during Quiet Periods

The SEA presented in figure 5.5 gives a statistical view on the quiet variations. Hence,
our first approach to reproduce the quiet variations will be based on a similar SEA of
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the diurnal and semi-diurnal filter responses. The resulting model will depend upon local
time LT and season L. Accordingly, we conduct the superposed epoch analysis (SEA) on
the sum of the two frequency contributions per observatory and per magnetic component,
i.e. x24 +x12 and y24 +y12, during CK-days between 1991 and 2019 in the same manner as
in 5.2.1. The first row of figure 5.6 presents the SEA results for the magnetic observatory
CLF. The black lines indicate the mean sunrise (morning hours) and sunset (evening
hours) times between 1991 and 2019. There is a clear trend in activity with sunrise
and sunset. The y24 + y12 component describes a maximum in the morning hours and
a minimum in the afternoon hours, almost vanishing during night times throughout the
year. The signal is stronger during summer (in NH L = 90◦) than during winter (in NH
L = 270◦). The x24 + x12 component is not as clearly phased with sunrise/sunset and
describes a minimum around local noon. These observations are in agreement with the
general Sq footprints in 5.2.1 and support the choice of constraining the modelling to
diurnal and semi-diurnal responses.
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Figure 5.6: SEA of diurnal and semi-diurnal components for magnetically quiet days
between 1991-2019 at the magnetic observatory CLF in the upper two panels. The lower
panels show the results of the analytical model from equation (5.5). Sunrise and sunset
local times are indicated as black lines.

We use these SEA results to derive a qualitative description of the variations within
the diurnal and semi-diurnal contributions in dependence of the season and local time.
The statistical trend evidently exhibits a sinusoidal relationship in both dimensions, i.e.
local time and solar longitude. Thus, a two dimensional harmonics model may be used
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per component:

ẑL+LT =
(

k∑
i=0

αi cos(iL) + βi sin(iL)
) k∑

j=0
γj cos(jLT ) + δj sin(jLT )

 (5.5)

where L is the solar longitude, LT is the local time, k is the order of the harmonics with
coefficients αi, βi, γj and δj for i, j = 0, 1..k. The coefficients are determined by fitting
this model with order k = 4 to retrieve x̂L+LT and ŷL+LT . The values of the coefficients
can be found in appendix C.1. There was no significant difference found between fitting
each frequency response separately and adding them, or directly fitting the sum of the two
frequency responses. The SEA generated models x̂L+LT and ŷL+LT at CLF are illustrated
in the lower panels of figure 5.6 and clearly replicate the statistical features of the original
filter responses. This implies that the season and local time dependencies are sufficient
to explain the overarching variation of the 24h and 12h signal.

5.2.2.2 Solar Cycle and Seasonal Dependencies

The model in equation (5.5) is derived from statistical binning, whereby a bin does not
hold information on the solar cycle phase, i.e. F10.7. As quiet days tend to occur more
frequently during solar minima and therefore during lower values of F10.7 (compare figure
2.4 with figure 3.1) this model is biased towards lower solar cycle phases and may lead to
underestimation of amplitudes during years with higher solar activity.

To avoid this bias, let us seek a description of the variations in dependence of F10.7.
Remember that the filter responses are periodic functions in nature and thus can be
described by an amplitude and phase, whereby the phase is determined by the period
P of each filter. However, it is not excluded that phase shifts occur which themselves
may depend upon solar activity and season. Indeed, phase shifts are clearly observable in
figures 5.3 and 5.4 that depend upon season, e.g. the minima of x24 occur earlier in summer
than during winter and the minima of y24 later in summer than in winter. Therefore, it
makes sense to look for a description of the amplitude and phase in dependence of L and
F10.7, such that a filter response z may be described by

z = Âz(L, F10.7) cos
(
ϕz + ϕ̂z(L, F10.7)

)
, (5.6)

whereby Âz denotes the dependent amplitude, ϕz the filter’s phase and ϕ̂z the dependent
phase shift. Note that the information on local time LT is already coded into the phase
using this description.

As before, I use a harmonic model for L, but here with order k = 2, for both, amplitude
and phase. Additionally, I add a linear dependency on F10.7 to account for its influence.
The linear relationship with solar activity, which also varies with season, is in agreement
with Shinbori, Koyama, Nosé, Hori, and Otsuka (2017) and may also be inferred from
figure 5.15 which will be discussed later. To avoid extreme solar forcing events, we will
restrict the data-set to CK48-days only, as has been done before. The mathematical
description for the model is as follows. First, the filter response is separated in its cosine
c and sine s components. These are then used to define the amplitude a =

√
c2 + s2 and

the phase p = arctan(s, d), which are illustrated in figure 5.9 in blue for CK-days and in
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grey for non-CK-days. The full model describes as

Âzp(L, F10.7) = az(L) + bz(L)F10.7 (5.7)
ϕ̂zp(L, F10.7) = cz(L) + dz(L)F10.7 (5.8)

ẑp,L+F 10.7 = Âz cos
(
ϕz − ϕ̂z

)
(5.9)

where Â and ϕ̂ are the modeled amplitude and phase, a, b, c, d are the harmonic models
depending on L which write as

a(L) =
2∑

i=0
αi cos(iL) + βi sin(iL) , (5.10)

and analogously for b(L), c(L), d(L) for which the corresponding coefficients αi and βi

are given in appendix C.2.
In practice, the amplitude and phase are separated into intervals of 10◦ solar longitude

L. Each interval ILi is then linearly fitted according to solar activity F10.7, i.e. hLi =
gi + fi × F10.7, for i = 1, .., 36. Figure 5.7 illustrates this process for the amplitude of
x24. All of the 36 intervals ILi are plotted, each being a scatter plot of F10.7 and the
amplitude. The linear fit per interval is indicated in red. We observe that the linear fit
differs for each ILi. First of all, the majority of the F10.7 values is concentrated towards
lower values, beneath 100 to 120. This means that the slope fi of the fit is based on fewer
values. In fact, at several intervals the slope is close to zero (e.g. intervals from L : 60 to
L : 100). Other intervals show rather steep slopes like L : 330 − 340. In general, we can
deduce, that the linearity relationship signifies rather a trend here. Eventually, this leads
to 36 times 2 coefficients (one for the offset and one for the slope) for each, the amplitude
and phase.

Figure 5.7: Fitting the amplitude of x24 in linear dependence to solar activity F10.7 for
quiet days in intervals of 10◦ solar longitude L.

These sets of coefficients are then used to for the harmonic models a(L), b(L), c(L),
d(L). The coefficients gi and fi correspond to the blue dots, and the red line is the fitted
harmonic model in figure 5.8. According to (5.7) and (5.8), b and d are the coefficients
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that express the dependence on F10.7. Comparing the values for b and d with a and c,
we see that there are two magnitudes of difference for the amplitudes and three for the
phase. This implies, that in the model the dependence on solar activity is rather small
and becomes only important for very high values of F10.7.
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Figure 5.8: Fitting the amplitude and phase coefficients derived from figure 5.7 with the
harmonic model of equation (5.10) with order k=2.

In figure 5.9 the resulting models for Â24 from (5.7) and ϕ̂24 from (5.8) (in yellow) for
the amplitude and phase (in blue for CK-days and grey otherwise) of x24 are presented.
The resulting coefficients αi and βi for each a, b, c and d are given in appendix C.2.

For Â24 in the upper panel, we see that the general, seasonal and solar cycle trend
of the amplitude is followed. Clear spikes are visible which correspond to elevated F10.7
values. For example, the spike due to the Halloween storm is clearly visible. It is also
clear from this plot, that the amplitudes are in general quite underestimated and small
scale structures are not really resolved.

For Φ̂24, we can draw similar conclusions as it follows the general, seasonal trend well.
Unsurprisingly, variations in F10.7 are not as pronounced as for Â24. Also here, small
scale structures are not really resolved.

Overall, the general trend of the amplitude and phase is contained within the models
but they struggle when it comes to resolving more granular day-by-day features. The full
model for the diurnal and semi-diurnal components added together derives as

x̂L+F 10.7 = x̂24,L+F 10.7 + x̂12,L+F 10.7 (5.11)
ŷL+F 10.7 = ŷ24,L+F 10.7 + ŷ12,L+F 10.7 (5.12)

Further details of these are discussed in chapter 5.2.2.5.

5.2.2.3 Forward Propagation of Filter Responses

The previous two models are derived by attempting to fit the data on the entire available
period from 1991 to 2019. Even though both capture general trends, they struggle to
resolve day by day features. For this third model, I will follow a different strategy.
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Figure 5.9: Amplitude and phase for x24 at CLF with its corresponding model results (in
yellow) for Â and ϕ̂. Note that the data in blue is the amplitude and phase of x24 during
CK48 days. Non-CK days are indicated in grey.

In order to anticipate the signal of the filter responses, I assume that they do not
change significantly from one day to another, at least not during quiet days. With this
assumption, the signal can be forward propagated, which means that the signal is time-
shifted from the past to represent the signal in the future. The used time-shift δt hereby
depends upon the period P of the filter. For the diurnal filter this would be 24 hours,
i.e. the signal is time-shifted into the future for 24 hours. Analogously, the semi-diurnal
filter reconstruction is time-shifted 12 hours into the future. In terms of implementation
this is achieved by a simple data shift of the corresponding δt. We end up with two
reconstructions per filter and component:

ẑ24,shift(t) = z24(t − 24h) (5.13)
ẑ12,shift(t) = z12(t − 12h) (5.14)

Their superposition results in the reconstruction with forward propagation

x̂shift = x̂24,shift + x̂12,shift (5.15)
ŷshift = ŷ24,shift + ŷ12,shift (5.16)

Figure 5.10 demonstrates this method on ten consecutive CK days in the beginning
of 2010. For the X component (upper panel), we notice discrepancies in the beginning
of the period and a rather good agreement towards the end, though the phase is not
always well met. On the second half of January 7th, the forward propagation is very
accurate. The extrapolation of Y is in good agreement with the actual data and the
phase is generally well met. Between the second half of January 2nd and January 5th, the
strongest amplitude and phase discrepancies occur, which are smaller compared to the X
component. I would like to point out, that the local extrapolation is not exactly equal at
t and t − 24h, e.g. x̂(t) ̸= x(t − 24h). This is due to the fact that its 12h component is
taken at t − 12h and not at t − 24h. An important implication for this method is that
its foreseeing capability is limited to the period of the filter. In practice this means that
at time-step t0 only the following 24h, t0 + 24h, can be modelled for the 24h filter, the
following, t0 + 12h, for the 12h filter, and so on.

In general, we can infer that the forward propagation works well to reproduce quiet
variations, when there is little to no change from one day to the next.
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Figure 5.10: Comparison of the local extrapolation for the combination of diurnal and
semi-diurnal filter responses for CLF. The extrapolation is in purple and the sum of the
filter values is in blue. All days are CK-days. The y-axis is in nanotesla.

5.2.2.4 Further Reconstructions

Both, L + LT and L + F10.7 models, reproduce general trends very well but fail to
anticipate more granular variations. Further considerations on how to catch these have
been conducted. I briefly outline some of these models here. Unfortunately, even though
some work a little better than others, all of them fail to catch more granular variations
appropriately.

• Moon phase
If we observe the spectrum of the semi-diurnal filter responses x12 and y12 closely in
figure 4.2, we identify a second peak just to the left of the frequency peak at 12h.
In fact, this peak is associated to the moon which induces a signal at a period of
12.4h. As it is so close to the 12h one, it can induce a smooth shift of the phase in
the 12h filter responses. To account for it, I added the 12.4h amplitude and phase in
(5.6) and fitted it accordingly. For x12 the resulting reconstruction performs similar
to the SEA fit x̂12,L+LT . However, it introduces strong phase-lags for y12, making it
unusable.

• Energy deposited into the atmosphere
Another idea is to base the model upon the energy deposited within the system.
The energy can be estimated by the duration of exposure to sunlight times the
intensity per day. The solar zenith angle can be used to describe the duration and
F10.7 the intensity. This quantity is then used to fit the amplitude and phase of
each filter response. The resulting reconstructions struggle to reproduce amplitudes
and phases, which may imply that the deposited energy alone is not sufficient to
explain the observed variations or that the response is not linear.

One reason for these models to not perform well can be related to the used parameters. All
parameters are external ones. What I mean by that is that solar cycle phases, solar zenith
angles and seasons and moon phases influence the system and the ionosphere from the
top. However, the ionosphere is also driven from below, and actually heavily influenced
from the underlying neutral atmosphere. Whereby the season L and energy deposited
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in the system do play a role in heating of the neutral atmosphere, no other parameter
describing the complex tide interactions is used in any of these models.

5.2.2.5 Comparison of Reconstructions

With equations (5.5) and (5.9) we have two analytical descriptions of the diurnal and
semi-diurnal variations that depend upon season and local time, and season and solar
activity, respectively. The third model in (5.13) and (5.14) is based on local properties of
the signal. Let us discuss their performances a bit further.

Figure 5.11 shows the three models versus the actual filter responses for solar cycle
23. The models for x24+12 are on the left and for y24+12 on the right. From top to bottom
there is the season and local time model in orange, the season and solar activity model in
yellow and finally the forward propagation model in purple.

As the model based on season and local time ẑL+LT in orange is derived from the SEA,
it does not change from one year to the next and thus we see the unchanging repeating
patterns in both components. It is evident that this model is insensitive to any solar cycle
variations and performs worse during stronger solar activity, e.g. around solar maximum
in 2002. The superposition of filter responses x24+12 shows a high degree of variability.
From this it is hard to discern seasonal patterns and it is difficult to relate it to the
clear seasonal patterns of its model x̂L+LT . What we can agree to is, that during winter,
generally, amplitudes are lower than during summer. The superposition of filter responses
y24+12 shows a clear seasonal pattern that is well matched by its model ŷL+LT , apart from
the mentioned solar cycle variations.

Looking at the middle panels, the model based on season and solar activity ẑL+F 10.7
in yellow clearly changes amplitudes with solar cycle phases and shows seasonal patterns
for both components. xL+F 10.7 has an under-laying seasonal pattern that has clear higher
amplitudes during summer than winter during low solar cycle phases, e.g. around 1997
and 2007. This seasonal pattern is clearly modulated by stronger and more frequent solar
activity during solar maximum, around 2002. yL+F 10.7 shows the seasonal patterns clearly
with according adaption to solar activity.

The forward propagation model ẑshift in purple is almost indistinguishable on this
(extended) time-scale as it basically resembles the activity from the previous day and local
differences as seen on shorter timescales (like in figure 5.10) are not apparent anymore.

Summarising the greater picture we can say the following. For the model not taking
into account the solar activity, it is clear (and not surprising) that tit does not resemble
well periods with strong solar activity. Taking into account the solar activity F10.7
yields solar cycle trends and thus is better in reproducing general trends. The forward
propagation model is following the components indiscriminately on the scale of a solar
cycle. Let us compare the models on shorter time-scales to see differences on a more
granular level.

Figure 5.12 shows the results for x24+12 and y24+12 (left and right, respectively) for
three CK-days during solar maximum in the upper panels (a) and during solar minimum
in the lower panels (b). Each panel has three sub-panels that show the component in
blue together with each of the three models in the same color-coding as in figure 5.11.
The solar activity for the days in November 2001 was F10.7 > 200 and for the days in
November 2009 F10.7 < 80 (see figure 2.4).

To start the more granular comparison, let us begin by considering x24+12 in the
left panels. Looking at x̂L+LT in orange, we observe the clear underestimation of the
amplitude during maximum in 2001 (a) and intriguingly a slight overestimation thereof
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Figure 5.11: Comparison of the models over solar cycle 23 for CLF. The left panels show
the X component and the right panels the Y component. From top to bottom the models
are ẑL+LT (in orange), ẑL+F 10.7 (in yellow) and ẑshift (in purple). All vertical axes are in
nanotesla.

during 2009 (b). The phase is reasonably well reproduced for both SC phases. x̂L+F 10.7
in yellow performs very poorly during maximum and minimum. During solar maximum
(a), the phase is not very well met, while the amplitude is not resembled at all. During
solar minimum (b), the phase of the reconstruction lags behind for a few hours, while the
amplitude is slightly overestimated. The poor performance on the phase may be related
to the missing of the local time information. The forward propagation model x̂shift is
reasonably in phase and amplitudes are fairly well resembled for both solar cycle (SC)
phases.

For y24+12 in the right panels of (a) and (b), all models are remarkably well in phase
and match the amplitudes pretty well, except for ŷL+LT which does not match the solar
maximum amplitude.

Utilising the standard deviation σ, we can get a more quantitative assessment of the
performance of the models. First, we compute the standard deviation for each superposi-
tion of filter responses x24+12 and y24+12. Second, we compute the standard deviation for
the component minus the model (residuals), e.g. on z24+12 − ẑL+LT . A standard deviation
of zero, σ = 0 for the residuals would imply that the component is perfectly reconstructed.
This means the lower the standard deviation of the residuals the better the signal is re-
constructed. Table 5.1 summarises these values for the components and the residuals for
all three models. Please note that only data from quiet days is used for the calculation
of the standard deviation.

The lowest σ for X is found to be from the forward propagation model which reduces
the spread by around a third. This is slightly better than the L+LT model. The L+F10.7
model performs very poorly, having almost the same σ as X which can be partially related
to the model being out-of-phase. For Y , we see how each of the models performs a little
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Figure 5.12: Demonstration of the three models compared to the actual signal in blue for
(a) high and (b) low solar activity at CLF. The left panels show the X component and
the right panels the Y component. From top to bottom the models are ẑL+LT (in orange),
ẑL+F 10.7 (in yellow) and ẑshift (in purple). All vertical axes are in nanotesla.
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Table 5.1: Standard deviations for the initial filter response x24+12, y24+12 and the residuals
after removing each of the corresponding models.

σ σ

x24+12 5.58 nT y24+12 12.27 nT

res x̂L+LT 3.84 nT res ŷL+LT 3.95 nT
res x̂L+F 10.7 5.33 nT res ŷL+F 10.7 3.74 nT
res x̂shift 3.62 nT res ŷshift 3.22 nT

better: the best is also the forward propagation model, followed by the L + F10.7 model
and then by the L + LT model. The forward propagation model reduces the spread by
almost a factor of 4.

In conclusion, we can infer that the L + LT and L + F10.7 models may be used
to depict general trends in quiet variations. However, the used physical parameters are
not sufficient to accurately reproduce day-to-day behaviour, which especially for the X
component shows complex patterns. We have found that the best method to overcome
this challenge is to use local prior information of the signal with the forward propagation
model.

At last, while the y24+12 is well matched in general, the volatility and high fluctuations
of x24+12 pose a serious challenge for the task of physical modelling here. The question
remains in which way the presented models may be improved. The L + LT model is
derived on statistics which are performed exclusively on quiet days. As mentioned and
observed, this implies that it is weighted towards lower F10.7, explaining the observed
under-performance even during quiet days during solar maximum. The L + F10.7 model
adapts amplitudes according to solar cycle phase but performs quite poorly especially
when it comes to reproducing the phase in x24+12. This may imply that the linearity in
equation (5.9) is not sufficient to capture the real, under-lying relationship. Combining
the two, for example generating the SEA per solar cycle phase and then adapting it with
F10.7 can be one path to improve the modelling. Additionally, both models are derived
based on the entire considered period from 1991 to 2019. It is well-known, however, that
solar cycles can differ significantly from one to another. One possibility to take this into
account would be to adapt the model per solar cycle, i.e. derive them only over data
belonging to one solar cycle.

The forward propagation model reproduces the observed variations best among the
three analysed ones, but still there are considerable differences. This means that the
observed discrepancies have a different origin than from the sole dependence of the pa-
rameters LT , L or F10.7.

5.2.3 Day-to-Day (D2D) Variability
From the results of the previous modeling sub-section, we can infer a pertinent day-to-
day (D2D) variability within the (sub-)diurnal filter responses. Further investigations on
this variability are the subject in the following. We start with looking at the diurnal and
semi-diurnal filter responses individually for CLF as has been done in the previous chapter
5.2.2. As the D2D variability is a characteristic feature of Sq currents (see chapter 2.3.2),
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we will then investigate the combined diurnal filter responses xD and yD (see equations
(5.1) and (5.2)) more closely.

5.2.3.1 D2D in the Individual Diurnal and Semi-Diurnal Filters

In order to gain a better understanding of the D2D variability of the individual filters,
let us examine their amplitude and phase evolution from one day to another. To do
so, I determine local maxima and minima and their corresponding local solar time LT
occurrences. The peak-to-peak amplitude is derived as the difference between the value
at maximum and the value at the consecutive minimum in nT. The delay is the time in
hours that has passed to reach the consecutive minimum from the maximum. Figure 5.13
demonstrates these D2D variables for the diurnal filter response y24 during winter 2009.
The 14th of December was the only non CK-day during this period. Up until the 28th
of December the LT occurrences and delay of the extrema follow a smooth course. After
that, both can vary up to 4 hours from one day to another. The amplitude varies from
below 5 to up to 15nT throughout the period. This example already demonstrates that
there is a distinct day-to-day variability within the diurnal component. Indeed, this holds
true for all the other (sub-)diurnal components and in particular for y12, x12 and x24.
Note that for the semi-diurnal filter responses with period of 12h, there are two maxima
and two minima, and thus two amplitudes and two delays per day.

Figure 5.13: Temporal evolution of the diurnal filter response y24 during winter 2009-
2010 at CLF. Indicated are the extrema with their local time occurrences, as well as
the amplitude and delay among them. The dashed vertical lines mark midnight of every
second UT day.

From figures 5.3 and 5.4 and the reconstruction of the diurnal and semi-diurnal quiet
variations in chapter 5.2.2, we already deduced and confirmed a general seasonal and
solar cycle dependency. Let us investigate the extend of these dependencies on the D2D
variables.
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Figure 5.14: Local Time Occurrence (maxima in blue and minima in red), Delay (in
black) and Amplitude (in magenta) of the diurnal and semi-diurnal filter responses in
dependence of L for CLF. A polynomial fit to describe the amplitude variations in season
is indicated in bright blue. Each vertical axis shows the solar longitude L in degree.

Figure 5.14 illustrates the D2D variables for the diurnal x24, y24 and semi-diurnal x12,
y12 filter responses in dependence of season L during CK48 days between 1991 to 2019
(total of 3040 days). The left panels shows the local time occurrences, maxima in red
and minima in blue. It is possible to identify the general trend in the LT occurrences
of the extrema of x24 and x12 (earlier in summer than in winter), even though there is
a significant scatter. For y24 the extrema occur earlier in winter than in summer, while
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it is vice-versa for y12 where extrema rather occur earlier in summer than in winter. For
both scattering is almost non-existent during summer and increases slightly during winter.
The delay is shown in the middle panels. As for the occurrences, the delays for the X
filters have a higher dispersion than the ones of the Y filters. The LT occurrences and
the delay are closely related to the phase of the filter responses. The strong dispersion in
X implies that the signal is prone to changing phase rather rapidly, already during quiet
days and seasonal dependencies are rather secondary. The dispersion in Y is rather low
and seasonal dependencies are clearer. This can be one explanation to why the models
perform worse for the X component than for the Y component.

The right panels show clear trends and dispersion in amplitudes. We can have a
quantitative view on the amplitudes by fitting a polynomial p of order 4, which is indicated
by the blue line. The coefficients of these fits can be found in appendix C.3. The peak
amplitude in summer, the minimum amplitude in winter and the mean amplitude during
equinoxes is listed in table 5.2. The seasons are divided into four intervals of each 90◦

solar longitude, centred at L = 0◦ for spring, L = 90◦ for summer, L = 180◦ for autumn
and finally L = 240◦ for winter. The amplitude of x24 is twice as large during summer
than during winter. The dispersion varies only slightly and is lowest in winter σ = 4.83
and highest in autumn σ = 6.09. For x12, the amplitude or around 8 nT does not vary
very much depending on the season, with values slightly smaller during winter and spring
6.6 nT to 6.8 nT than during summer and autumn 8.3 nT to 8.4 nT. The dispersion is
constant for all seasons at around 4 nT. While x24 has some dependence, the dispersion
is quite high and x12 is rather unaffected by season. For both Y filter responses, the
amplitude has a clear dependency on season with highest amplitudes during summer and
significantly lower amplitudes during winter. The dispersion is highest during summer
and lowest during winter. The amplitudes of the Y filters show a very strong dependence
on L.

Again these insights support our findings that the models for the Y component are
more accurate, while the X component shows a higher level of complexity, especially for
the phase.

Table 5.2: The mean amplitude and corresponding dispersion of the diurnal and semi-
diurnal filter responses in dependence of season for CLF. All values are in nanotesla.

spring summer autumn winter
x24 8.73 ±5.35 15.42 ±5.85 13.61 ±6.09 7.21±4.83
x12 6.62 ±3.84 8.35 ±3.94 8.43 ±4.32 6.75 ±3.68
y24 22.70 ±6.05 36.44 ±6.62 24.81 ±6.20 8.53 ±4.15
y12 20.01 ±6.33 28.46 ±7.17 21.30 ±5.90 8.46 ±4.01

Analogously to figure 5.14, the dependencies of the day-to-day variables on the solar
flux F10.7 during magnetically quiet days are shown in figure 5.15. Here, the overall
dependencies on F10.7 are considerably less prominent, or even non-existent.

Starting with the local time occurrences of the extrema and their corresponding delay,
it is very hard to decipher any clear trend. It seems that their spreading during low F10.7
is higher than during high F10.7. Please be reminded that quiet days are biased towards
lower solar cycle phases, occurring more frequently than during higher SC phases, which
contributes to the increased number of values around low F10.7. This implies that F10.7
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has very little influence on the day-to-day variability of the phase, which is reflected in
the small coefficients b and d in (5.7) and (5.8), see also figure 5.8.

For the amplitude one may surmise a tendency with increasing solar flux for which a
very weak linear dependency may be deduced for x24, y12 and y24. No dependency of x12
on F10.7 may be deduced from this figure which is consistent with the model coefficients
as they are the smallest for x12 dependence on F10.7 (see appendix table C.3).

These findings underline the challenges the L + F10.7 model encounters to reproduce
the signal on a day by day basis. We can conclude that the simple linear dependence on
F10.7 is not able to describe the relationship.
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Figure 5.15: Local Time Occurrence (maxima in blue and minima in red), Delay (in
black) and Amplitude (in magenta) of the diurnal and semi-diurnal filter responses in
dependence of F10.7 for CLF. Each horizontal axis shows the solar activity index F10.7
in sfu.
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5.2.3.2 D2D Variations within the Combined (Sub-)Diurnal Filters

We expect the combined (sub-)diurnal filter responses xD and yD to inherit the individual
filter responses’ D2D variability. Additionally, they hold Sq information as we have seen
in chapter 5.2.1 and an inherent day-to-day variability is characteristic for the Sq current
systems. This behaviour can be followed on Figure 5.16 where CLF’s xD and yD are
plotted over consecutive CK48 days during summer 2009.
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Figure 5.16: Day-to-day variability of xD and yD at CLF over a period of consecutive
CK-days. The upper panel presents the evolution of xD with the daily minimum (blue
stars) and the lower panel the daily evolution of yD with daily maximum / minimum
marked by red and blue stars.

For xD, the definition of a maximum and minimum (and successively delay and am-
plitude) during sunlit hours is not applicable. Its trend generally has only one minimum
during the day (see also Figure 5.5). Therefore I investigate the occurrences of the min-
imum and their associated amplitude in dependence of season L in figure 5.17. We see
that the timing of its minimum at CLF shows a distinct shift of approximately 2 hours
around equinox (starting around 08h LT between spring and summer, and around 10h
LT during autumn and winter). Apart from this general pattern, we see clear dispersion
of the occurrences for all seasons. This is another indicator that the phase of xD, even
though having a general trend with season, can vary significantly from one day to the
next. The amplitude of the minimum (on the right in pink) has a principal variation with
season, on top of a persistent dispersion. As before, we can use a polynomial fit of order
4 to describe its variations quantitatively. The coefficients of the fit are given in appendix
C.3. Table 5.3 summarises the mean and dispersion of the amplitude for each season.
The summer minimum is around −16 nT and the winter maximum is around −9 nT, in-
dicating that the winter amplitude is about 2/3 times smaller than during summer. The
dispersion instead is constantly around 5 nT for all seasons.

For yD in figure 5.18, we see a recurrent sinusoidal pattern during sunlit hours for
which we can deduce the three D2D variables LT occurrence of maxima, their delay and
amplitude as was done for the individual filter responses before. In this example, the
amplitude varies significantly on a daily basis between 20 nT and 80 nT. In the same
manner, I compute the D2D variables for yD at CLF for all quiet days between 1991 and
2019 and present them as scatter-plots against solar longitude in Figure 5.18. It is clear
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Figure 5.17: Statistics of seasonal and day-to-day variability of xD at CLF during quiet
days between 1991 and 2019. The left panel shows local time occurrence of minima, and
the right the amplitude of the minima.
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Figure 5.18: Statistics of seasonal and day-to-day variability of yD at CLF during quiet
days between 1991 and 2019. From left to right, the panels show local time occurrence of
extrema, delay and amplitude between them. Taken from Haberle et al. (2022).

that the day-to-day variability has a strong seasonal dependency. For the maximum, two
regimes can be distinguished: during summer months the maxima occur around 06-09h
LT, while they occur later at around 09-10h LT during winter, which is directly related
to the LT sunrise shift with season. The transition between these two regimes happens
abruptly around L = 10◦ and L = 180◦. On the other hand, the timing of the minimum
is more constant over time, which, too, is related to the decrease of activity observed
constantly around 15h LT in Figure 5.5. The central panel shows that the delay between
maximum and consecutive minimum is longer during summer (around 6-7 hours) than
during winter (around 5 hours) with more dispersion in summer. This implies that the
phase of yD is rather robust compared to xD. The right panel shows a clear sinusoidal
dependency of the amplitude on the season. As for xD, table 5.3 gives the numbers of the
4th order polynomial fit for the observed amplitude of yD. The coefficients are given in
appendix C.3. Summer maximum is 62 nT, while the winter minimum is around 20 nT,
indicating that the amplitude during summer is about 3 times larger than during winter.

Returning to the day-to-day variability of the signal, it is clear from Figures 5.17
and 5.18 that, for any given L, dispersion is observed in the D2D variables parameters.
For yD this spread is comparable during during solstices than during equinoxes and is
almost doubled during summer with respect to winter. For the amplitude, the standard
deviation is 12.27 nT for the summer period (45◦ < L < 135◦) and 7.72 nT during win-
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Table 5.3: Quantification of amplitude mean and spread in dependence of season for CLF.
All values are in nanotesla.

xD yD

spring −10.45 ± 4.56 48.48 ± 11.94
summer −16.09 ± 4.98 62.02 ± 12.27
autumn −14.98 ± 5.43 50.03 ± 11.10
winter −8.65 ± 4.57 20.23 ± 7.72

ter (225◦ < L < 315◦), suggesting that the spread during summer increases by over 60 %
compared to winter. For xD amplitude, the standard deviation, however, is rather con-
stant, with maximum differences of 20 %. Overall, we see a total day-to-day variability in
amplitude for yD of about 20 % to 30 % and for xD of about 20 %.

The results presented here demonstrate a non-negligible day-to-day variability of the
combined filter outputs xD and yD which is more pronounced during summer. This phe-
nomenon has been observed in the majority of physical and electro-dynamical parameters
of the ionosphere for more than 40 years and is well documented for Sq currents in the
literature (see e.g. Schlapp (1968); G. M. Brown and Williams (1969); Greener and
Schlapp (1979); Takeda and Araki (1985); Yamazaki and Maute (2017)). Simulations
from Yamazaki, Häusler, and Wild (2016) showed that variations within the Sq current
can be attributed to 75 % to solar illumination and to 25 % to atmospheric and magne-
tospheric drivers. Forbes, Palo, and Zhang (2000) found that around 25 % to 30 % of
the plasma peak density variations in the 1-2 hours to days range in the F-region can be
attributed to meteorological phenomena. The day-to-day variabilities found in our study
are in the order of 20 % to 30 % for the amplitude of xD and yD, which is consistent with
these previous studies. Additionally, the results presented in figures 5.17 and 5.18 reveal
two intriguing properties of the day-to-day variability:

- The occurrence in local time of the maxima and minima, as well as the delay among
them has a clear dependency on season.

- The spread of the amplitude is clearly dependent on season.

Our analysis minimises magnetospheric influences by taking into account only very
quiet magnetic conditions. However, on such quiet days, solar flares may still occur and
disturb the signal. To investigate on this, we excluded all quiet days on which X and M
class solar flares were recorded during daylight hours and re-ran our analysis. Expectedly,
the percentages of day-to-day variability did not change significantly. Flares can have
very strong effects on the ionospheric ionization and thus on the associated currents, but
their influences are only present for a very limited time (J. Y. Liu, Chiu, & Lin, 1996).

For the individual filter responses, the spread in local time occurrences of extrema
and associated delays is clearly narrower during high solar activity than during quieter
days while no clear dependence on F10.7 was identifiable, as indicated in figure 5.15.
This suggests that solar flux variations due to solar cycle phases are not impacting the
day-to-day variability appreciably.

These considerations lead us to conclude that the majority of the observed day-to-
day variability may be attributed to atmospheric drivers only, which underlying processes
become stronger with increasing solar illumination, confirming the neutral atmosphere as
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a key role.
Gravity waves and tides within the neutral atmosphere are known to exhibit complex

interference behaviour that can drastically change from one day to another (Stening,
Reztsova, & Minh, 2005; H. L. Liu et al., 2018). For example, the lunar tide induced by
the revolution of the moon around Earth has a period of 12.4 hours which is very close to
that of the solar semi-diurnal one. The small difference in period may lead to a smooth
drift of the contributions of xD and yD, leading to amplification or reduction of the global
signal over a course of a few days. Attempts to model such a lunar tide effect did not
reproduce the variations of amplitude within the combined daily contributions xD and yD.
This tends to conclude that several sources of tides and waves (like e.g. the well-known
5-days planetary waves (King, Wheeler, & Lane, 2015; Day, Taylor, & Mitchell, 2012) are
involved in this phenomenon which remains challenging to model.

5.3 Storm Contributions

Signatures of strong geomagnetic storms are evidently present in all presented figures
that illustrate the filter responses over the entire solar cycle. For example contributions
of the famous Halloween storms in the end of 2003 are distinctly recognisable within the
long-term filter responses x>24 and y>24 in figures 5.1 and 5.2. For the (sub-)diurnal
filter responses and their combination in figures 5.3 and 5.4, the Halloween storms are
identifiable as vertical lines of strong values which occur at the same time as the peak in
F10.7 in late 2003.

Let us emphasize on the storm contributions with the concrete example of the most
intense event of SC24: the St. Patrick storm in 2015 (see section 3.1.5). The X and
Y components at CLF during the St. Patrick storm together with the filter baseline in
red are shown in the first panels of Figure 5.19. From this it is very clear that the filter
baseline follows the storm-induced deflection of both components closely. The second
panels indicate the long-term filter responses, which clearly extracted the main storm
features. Before and after the event, the combined (sub-)diurnal filter responses xD and
yD (in the third panels from top) follow smooth patterns that are in agreement with the
quiet variations we saw in chapter 5.2. This pattern is majorly distorted during the main
phase of the storm and still influenced during its recovery phase. In the bottom panels,
I depict the residuals, i.e. component minus the full filter baseline. A part of the storm
influence is still clearly contained within these but underestimated as some of its effects
are already removed by the filter baseline.

5.4 Conclusion for the Filter Baseline

In chapter 4 I introduced the filter baseline which is made up of the responses of five
temporal filters. The filters are designed to operate on frequency ranges related to known
quiet geomagnetic field sources in mid-latitudes, i.e. one long-term filter for the secular
variation and four (sub-)diurnal filters containing the harmonics of 24h for the solar quiet
current systems.

In order to determine the sources that effectively contribute to the filter baseline I
presented and analysed the filter responses in detail in chapter 5. In section 5.1, and
especially 5.2, we concluded that the secular variation is effectively captured within the
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Figure 5.19: Magnetic field measurements and filter responses during the St. Patrick’s
Storm in 2015 at CLF. The X component is on the left and the Y component on the right.
From top to bottom: measurements (black) with overlaid filter baseline (red); long-term
filter responses; combined (sub-)diurnal filter responses; residuals by removing the filter
baseline from the measurements. Storm signatures are evident in all panels.

long-term filter responses. A more thorough analysis was necessary to identify the so-
lar quiet patterns within the (sub-)diurnal filter responses. We identified the statistical
properties of the Sq current by using the superposed-epoch analysis on the combined
(sub-)diurnal filter responses. Three analytical models were presented to describe the ob-
served quiet variations within the 24h and 12h filter responses in section 5.2.2 for which
the forward propagation model in 5.2.2.3 performed the best. In chapter 5.2.3 we were able
to attribute the challenges encountered during the modelling to the intrinsic day-to-day
variability within the individual filter responses. Furthermore, the day-to-day variability
within the combined (sub-)diurnal filter responses is very similar to that of the Sq cur-
rents. This confirms that not only the Sq current system is an important contributor to
the filter baseline but that even its intrinsic D2D variability which is significantly influ-
enced by the neutral atmosphere is accounted for. We conclude that the filter baseline
contains relevant quiet sources of mid-latitudes as published in Haberle et al. (2022).

In the last part of this chapter, in section 5.3, I elaborated on further contributions
within the filter baseline which confirms that the filter baseline contains significant storm
contributions. While the filter baseline can safely be deployed during geomagnetically
quiet periods, all levels of filters can be strongly modified during non-quiet periods, making
the filter baseline not directly applicable outside quiet periods. In the latter case, the filter
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baseline tends to contain a considerable amount of storm influences as indicated by figure
5.19. Further discussions of the filter baseline and comparisons with other methods during
quiet periods can be found in Haberle et al. (2022). For the derivation of the final baseline
this implies that further steps are necessary to remove the storm signatures. This is the
challenge we will tackle in chapter 6.
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Chapter 6

Adapting the Filter Baseline during
Disturbances

The filter baseline is well suited to follow typical variations during geomagnetically quiet
periods and captures quiet sources accurately, including the intrinsic day-to-day variabil-
ity. However, disturbance contributions within the filter baseline are still present during
non-quiet periods, especially during storm-time. This indicates that using the filter base-
line directly will tend to underestimate the strength of storms and disturbances. Thus,
we acknowledge that the filter baseline is not directly applicable for all time periods. This
chapter explores possible solutions to address this issue. The strategy is to substitute the
baseline during disturbance-time with representative quiet variations such as explored
in chapter 5.2.2. As has been done in 5.2.2 and 5.2.3, we will present and discuss the
results for the magnetic observatory Chambon-la-Forêt, as discussed in 4.1. Keeping in
mind that our goal is to deploy this baseline in an operational, possible near-real time
context, we pose the requirement that the identification of disturbance intervals and the
corresponding replacement baseline are achieved without further manual intervention.

In order to adapt the baseline during disturbance-time, we need two ingredients: I)
the knowledge of when the filter baseline fails, meaning time-intervals when the baseline
would underestimate effects and thus needs to be replaced and II) how to replace the
baseline during the identified time-interval. We start with the investigation of proxies
that hold disturbance information and how to quantify their suitability for determining
on when to replace the baseline. With significant parameters at hand, we develop an
algorithm that identifies disturbance intervals. We will then discuss which replacement
options best represent quiet variations during the identified storm intervals leading to the
definition of the full baseline. We will put the results in perspective by comparing it to
other baseline derivation methods and provide further discussions about the presented
methodology.

6.1 Disturbance Proxies
In the first instance we look at parameters that are able to provide insights about when
the baseline leads to residuals that tend to underestimate the effects of disturbances. In
order to develop an understanding of such effects, we will consider a prolonged period
and investigate the behaviour of the magnetic components and filter responses during
identified events. Figures 6.1 and 6.2 show the evolution of the X and Y components
at CLF with their respective filter baselines, the responses of all filters and the resulting
residuals. The first panel depicts the component in black with overlaid filter baseline in
red. The following panels show the filter responses of the long-term filter, the combined
diurnal filter, the 24h-, 12h-, 8h-, and 6h-filters separately and finally the residuals (derived

103
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as component minus filter baseline). The orange indicates filter responses during CK days
and blue non-CK days.

For X in the top panel of figure 6.1 four events (1-4) are marked. Two storm-like events
can be identified: one at the end of April/beginning of May marked as (1) and one at the
end of May/beginning of June marked as (3). For both, the deflection of X is strongly
pronounced which is closely followed by the filter baseline. During these two events we
expect the residuals derived with the filter baseline to underestimate the effects of the
storm, leading to the need to replace it. Event (4) can be identified by a deflection in X
which is less pronounced than in (1) and (3). The rather smooth variations from previous
days are perturbed nonetheless, such that a substitution would be desirable. Event (2)
does not exhibit a deflection, but clearly interrupts the rather smooth X variations from
previous days such that a substitution of the baseline may be applicable. The goal is
to relate variations within the filter responses and residuals to the events (1-4) and to
compare them between CK days and non-CK days as displayed in figure 6.1.

• The long-term filter response x>24 (second panel from top) inherits the deflections
for the two storms (1) and (3). Event (4) shows a much weaker signature and event
(2) a positive deflection, but it is not straight-forward to discern them from previous
CK variations.

• The combined (sub-)diurnal filter response xD in the third panel from top shows
rather unstructured patterns such that differences in modulation on CK, non-CK
days and event (2) are unclear. The stronger the event the stronger the correspond-
ing modulation in pattern and amplitude for events (1), (3) and (4).

• The diurnal filter response x24 (in the fourth panel from top) shows comparable
amplitude variations during CK, non-CK days and the weak event (2), while en-
hancements occur depending on the strength for events (1),(3) and (4). Especially
during the strong event (3) the amplitude rises significantly.

• The semi-diurnal filter response x12 (fifth panel from top) shows rather clear differ-
ences between CK days and disturbed non-CK days, being modulated clearly during
events (1), (2) and (3). Intriguingly, its amplitude during event (4) is substantially
decreased.

• For filter response x8 (sixth panel from top) it is challenging to distinguish variations
during CK days and non-CK days.

• Looking at x6 (seventh panel from top), amplitudes clearly vary between CK and
non-CK days. The strong event (3) manifests itself in a clear amplitude increase,
whereby events (1) and (4) to a lesser extent but still identifiable. Signatures of
event (2) are not present.

• Last but not least, the residuals (bottom panel) show consistently low values during
CK-days (orange) and clearly elevated amplitudes during disturbances. All four
events have clear signatures.

Turning our attention towards figure 6.2, the same four disturbance events (1-4) are
indicated for the Y component (top panel). Contrarily to X, event (1) influences the
amplitude of Y clearer than event (3). The smooth variations are perturbed for both
events and the substitution of the baseline is favourable. The effects of event (4) are
rather subtle, though it modifies the smooth pattern such that a baseline replacement
may be considered. Event (2) has no noteworthy signature in Y that would raise the need
to substitute the baseline. On June 4th there is a subtle disturbance, that modifies the
smooth day-to-day variations slightly which the filter baseline follows. It may be debated
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Figure 6.1: The variations of the filter responses for the X component at CLF. Panels from
top to bottom: X (black) with filter baseline yF B (red); long-term filter responses x>24;
combined (sub-)diurnal filter response xD; 24h-; 12h-; 8h-; 6h filter responses x24, x12, x8,
x6 ; residuals resX derived as X −xF B. Orange indicates CK days, i.e. magnetically very
quiet days. All vertical axes are in nanotesla.
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if this event needs replacement or not. In general, the Y component is less perturbed than
the X component during the considered period, mainly because its amplitude is smaller
than X and also because Y is orthogonal to the magnetic meridian, while X is collinear
to the field lines and thus more affected and dynamic. This characteristic is also reflected
in its filter responses as displayed in figure 6.2.

• For y>24 (second panel from top), although signatures of event (1) are present,
the identification of the other disturbances is difficult as their variations are rather
smooth during the considered period.

• The combined (sub-)diurnal filter yD (third panel from top) follows smooth patterns
during the entire period which are modulated and increased during events (1) and
(3).

• In panels four to six from top, there are no striking differences for CK and non-CK
days, as well as during the events (1-4) for the filter responses y24, y12 and y8. Solely
a small increase in y24 and y12 occurs in the beginning of event (1) and (3). This
can be related to the Y component being rather stable and less perturbed during
the illustrated period and these filter responses are more robust to disturbances in
general.

• The 6h filter response y6 (seventh panel from top) shows clear signatures of event
(3) and to a lesser extent in event (1), even though a bit delayed. No clear, isolated
signature can be found for event (1). Intriguingly, the disturbance on June 4th is
clearly recognisable.

• Aligned with the residuals of X, the residuals of the Y component (bottom panel)
have clear signatures of event (1), (3) and (4). As for y6 the disturbance on June
4th is clearly pronounced.

As a summary, during this exemplary period the parameters with the clearest signa-
tures of disturbances, for which the residuals as derived from the filter baseline would
underestimate their effects, are found to be within the following three parameters: the
long-term filter response for X, the 6h filter response and the residuals for both compo-
nents X and Y . This leads us to the hypothesis that these are the parameters that hold
the most valuable information on when to replace the baseline, at least for CLF, which is
a representative observatory in mid-latitudes. This example also demonstrates that dis-
turbances modulate the X component more profoundly than the Y component at CLF,
implying that the determination for when to replace the baseline has to be ascertained for
each of the components separately and may not need to be done always simultaneously for
both. In the following we will investigate the three identified parameters more thoroughly.

6.1.1 Storm Information within the Long-term Filter Responses
In chapter 5.1, we concluded that the main source contributing to the long-term filter
responses x>24, y>24 is the secular variation that induces the observed smooth trend on
top of recurrent seasonal and 27-days oscillations. In addition to these variations, we
observe distinct storm signatures during the entire period from 1991 to 2019, see also
figures 5.1 and 5.2. To isolate and highlight the storm signatures from the general trend
and recurrent variations, we remove the moving average over the past 27-days to obtain
the de-trended long-term filter responses. This enables us to compare them with storm
indices (see chapter 3.1.3). As a reminder, the Dst and SYM-H indices are commonly
accepted proxies for geomagnetic storms as they track the ring current that is significantly
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Figure 6.2: The variations of the filter responses for the Y component at CLF. Panels from
top to bottom: Y (black) with filter baseline yF B (red); long-term filter responses y>24;
combined (sub-)diurnal filter response yD; 24h-; 12h-; 8h-; 6h filter responses y24, y12, y8,
y6 ; residuals resY derived as Y − yF B. Orange indicates CK days, i.e. magnetically very
quiet days. All vertical axes are in nanotesla.
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intensified due to enhanced particle fluxes in the radiation belts during storm-time. The
SYM-H comes in a time-resolution of one minute, identical as the filter values, and is
derived from the horizontal component H from six low to mid-latitudinal observatories,
including CLF. In fact, the SYM-H index is derived from the horizontal component and
in order to get a more accurate view on its relationship with the long-term filters, we
introduce the 27-day de-trended long-term horizontal intensity h̄>24, defined as

h̄>24(t0) =
√

x(t0)2
>24 + y(t0)2

>24 − 1
27d

t0∑
t=t0−27d

√
x(t)2

>24 + y(t)2
>24 , (6.1)

A window of 27-days guarantees the smoothing of the 27-days variation and the removal
of seasonal and longer-term variations.
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Figure 6.3: Evolution of the 27-day de-trended long-term horizontal intensity ĥ>24 (in
blue) together with the limit hL (in orange) at CLF. The SYM-H index is indicated in
grey. The same events as in figures 6.1 and 6.2 are marked by horizontal dash-dotted
lines. The vertical axis is in nanotesla.

In figure 6.3, we see that the de-trended h̄>24 is in remarkable agreement with the
general patterns of SYM-H. Indeed, h̄>24 is linearly correlated with SYM-H having a
Pearson coefficient of 0.79, indicating strong linear correlation. We can leverage this
characteristic to derive a threshold hL for storm identification, indicated by the orange
horizontal line. Using the (minute resolution) data for the entire period between 1991 to
2019, we apply a linear fit for CLF to obtain the relationship

h̄>24 ≈ 0.47 × SYM-H + 6.34 . (6.2)

The question remains which SYM-H value is best to be used for defining the threshold hL.
In the literature it is common to define storms by their minimum Dst and SYM-H, e.g.
the conditions Dst < −50 nT and SYM-H < −50 nT are commonly used to define strong
storms, see chapter 2.4.2. Instead of using such an arbitrary limit, let us come back to our
findings from chapter 5.2 where we attributed the statistical variations of the combined
(sub-)diurnal filter response xD to yD to the Sq current system and try to leverage this
information.

We saw that, when looking at the super-posed epoch analysis, the xD and yD resemble
closely those of the Sq current system with distinctive day patterns as seen in figure 5.5. In
order to derive a threshold, we can partition the SEA from section 5.2.1 into activity levels
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of SYM-H and analyse until which level the traces of the Sq current systems are preserved.
For one UT day, the SYM-H level is determined by taking the mean of all SYM-H values
during that day. A common threshold for low and quiet geomagnetic activity is given by
SYM-H > −20 nT, which we will define as the first level (Gonzalez et al., 1994). From
there, we continue in 10nT steps down to -70nT. Really strong storms are then in the
last level for Dst < −70 nT. The SEA based on days sorted per SYM-H level is given in
figure 6.4. For very low activity, the patterns of the Sq currents are dominant. Though,
the values are slightly increased in general in comparison to figure 5.5. For SYM-H levels
between -20nT and -30nT, the general patterns of the Sq current system are generally
preserved. However, increased levels of activity is observable everywhere. Especially
night-time enhancements are starting to increase for both components. Continuing to
higher levels, for xD at SYM-H > −40 nT, its typical patterns are still recognisable,
though enhancements are apparent while for yD we could distinguish them until SYM-H <
−50 nT. From that on, the traces of Sq patterns melt within a general pattern from which
they are hardly distinguishable anymore.

This analysis suggests that Sq patterns in xD and yD prevail until SYM-H > −40 nT
at CLF. Using this information in (6.2) holds the threshold hL = −13 nT, as is marked by
the orange line in figure 6.3. Each time-step t that satisfies h̄>24(t) < hL is then marked as
a disturbance for both of the components, i.e. both xF B(t) and yF B(t) would need to be
replaced. In relation to the four events (1-4), the strong events (1) and (3), in particular
their main phases, are identified. The moderate event (4), however is too weak to fall
below the derived limit. Contrarily, event (2), which manifests itself with a positive peak,
is obviously missed as only negative values are taken into account by hL. This method
is thus intended to identify strong events for which the likelihood is high, that the filter
baseline for both components needs to be replaced.

One more thought on this method is that we need to be careful comparing the de-
trended filter responses with SYM-H. First of all, SYM-H is a global index derived by
combining measurements of six low to mid-latitude observatories while the de-trended
filter response is derived from one individual magnetic observatory. In the demonstrated
case, we look at data from the station CLF which is situated centrally in mid-latitudes.
Although being part of the SYM-H’s network, it is still possible that local characteristics
within h̄>24 are less pronounced or even not at all represented within SYM-H and vice
versa. This fact can be one explanation for the rather strong SYM-H around June 4th
(below −50 nT) not being quite as present within h̄>24 at CLF. Interestingly enough, this
disturbance is however clearly recognisable in Y . Secondly, even though we motivated the
choice of the 27days de-trending window, any changes in its length will ultimately also
affect the relationship (6.2) in SYM-H.

Nevertheless, SYM-H is a commonly accepted proxy for geomagnetic storms and the
stronger a storm the more geoeffective it is, increasing the likelihood that stations in-
dependent of latitude and longitude are affected. During such geoeffective disturbances,
the filter baseline tends to follow its effect closely and we can still make use of the linear
correlation with SYM-H and apply it to detect periods of strong storms.

6.1.2 Disturbance Information within the 6h Filter and the Resid-
uals

In the beginning of this chapter we deduced from figures 6.1 and 6.2 that the 6h-filter and
the residuals are parameters that hold valuable disturbance information. During the two
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Figure 6.4: The super-posed epoch analysis for the combined (sub-)diurnal filter responses
xD (left) and yD (right) at CLF for corresponding SYM-H levels.

strong events (1) and (3), for which baseline replacement is required, both feature signifi-
cantly elevated amplitudes from a general background/quiet level. Hence it is reasonable
to characterise the background level by identifying upper and lower boundaries.

Assuming that a significant increase in amplitude marks disturbance-time and that
occurrences of increased amplitudes are less frequent than the general background/quiet
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level, we can treat disturbance amplitudes like outliers. The mean µ and standard devi-
ation σ of a given distribution can be used to determine confidence intervals, e.g. in the
case of a normal distribution, 68% of values are between µ ± σ, 95% are between µ ± 2σ
and 99% are between the µ ± 3σ confidence interval. Thus, outliers can be characterised
by their associated iσth confidence interval and upper and lower boundaries can be de-
fined as bU/L = µ ± iσ. Identifying outliers by deriving boundaries from the mean and
standard variation in this manner is commonly referred to as sigma-clipping.

Before we can apply this approach to identify disturbance-time, we need to know
more about the underlying distributions of the 6h-filter values and the residuals and see
if their µ and σ are suitable parameters. Figure 6.5 presents relative-count histograms
in percentages for the two parameters during CK days (upper panels) and non-CK days
(lower panels) during the considered time period from figures 6.1 and 6.2. The best-
fit normal distribution and its corresponding mean µ and standard deviations ±σ are
indicated.

Starting with the parameters for X on the left, we see that the fitted distributions are
aligned well for x6. The peak of the distribution of the residuals X on CK days is more
pronounced, while the distribution on non-CK days has a steeper slope than their best-
fit Normal distributions. Analogous observations hold for y6 and residuals Y , whereby
additionally the peaks are more pronounced in general for these 3 parameters. A striking
feature is that during non-CK days, the distributions are farther spread than during
CK days, which is reflected in their σ. The difference between disturbed σ and quiet
σ is significantly more pronounced for the residuals. While the mean, indicated by the
solid vertical burgundy line, is around zero for all distributions, the standard deviation,
indicated by the dashed vertical burgundy lines, is sensitive for discriminating quiet from
disturbed periods. This also holds for the residuals even though their distribution is not
fully aligned with their best-fit Normal distribution. We can conclude that the sigma
values are suitable to define upper and lower boundaries.

The 6h-filter and the residuals are time-dependent variables that are influenced by
various external and internal factors. This implies for example that we cannot exclude
changes in the background variation during solar cycle phases, seasons or other factors.
Therefore using a standard deviation derived on a fixed time-interval will not be suffi-
cient. To allow for this variability, we compile the running mean µ and running standard
deviation σ over a sliding window of the past 6 days for each of the two parameters which
in turn enables us to define a running upper and lower boundary bu/l = µ ± σ. Six days
will account for any long-term effects from solar cycle phases or seasons, but also account
for periods which are very disturbed due to a strong event increasing background levels
for several days even after the end of such an event. The resulting boundaries are illus-
trated in figures 6.6 for X and 6.7 for Y . Note that we apply this method on both, the
6h-filter and the residuals. We see that the boundaries describe the general background
field accurately during quiet periods. As expected, the boundaries are broadened during
disturbances, as σ increases and stay broadened for the following days due to the distur-
bance being kept within sliding window (after 6 days the disturbance has moved out of
this window).

Coming back to the four events (1-4) we identified before, it is evident that the residuals
X and the residuals Y overshoot the background boundaries during each of the events.
While some of the values from the 6h-filter are outside of the defined boundaries, they
cross the boundaries less often and less clearly. This brings us to the conclusion that the
residuals hold stronger and clearer disturbance information and thus are better suited for
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Figure 6.5: Probability distribution functions for CK and non-CK days during April to
June 2010 of the residuals and 6h filter for X and Y . The burgundy curve indicates
the best-fit Normal distribution together with its mean (solid) and standard deviation
(dashed).

disturbance detection than the 6h-filter responses. In the next chapter, we will support
this conclusion quantitatively.

6.1.3 Disturbance Detection Qualifiers
The illustrated sample periods in figures 6.1 and 6.2 suggest that the long-term filter and
the residuals contain the most promising disturbance information. The valid question
remains whether this statement holds for the entire considered period between 1991-2019.
In the following, we introduce and discuss objective criteria that can aid us in evaluating
the quality of the detection.

It should be emphasized that the disturbance determination is evaluated in the same
time resolution as the available data, that means for each minute. Also note, that each
parameter was presented together with a dedicated method, i.e. we used a derived limit
for the long-term filter value and sigma-clipping for the residuals.

• Total amount of identified disturbance minutes
Considering the entire period of 28 years, the total amount of minutes that are
identified as disturbed provides information on how sensitive an algorithm is. For
example, if more than 50% of the time is identified, the method may be too relaxed
marking too many minutes. If on the other hand less than 5% are marked it may
be too restrictive. Rigorous empirical investigations indicated that around 25-35%
is a legit range to guarantee that not too little, nor too many minutes are marked.

• Ring current indices below a certain threshold
The stronger a storm, the more likely the need for substituting the filter baseline is.
In the literature, see storm lists in the introduction, a threshold of Dst < −50 nT is
frequently used to identify strong storms. We can evaluate algorithms based on how
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Figure 6.6: The upper panel shows the evolution of x6 and the lower one the residuals of
X. The upper and lower boundaries as derived by sigma-clipping are indicated in orange.
The vertical axes are in nanotesla.
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Figure 6.7: The upper panel shows the evolution of y6 and the lower one the residuals of
Y . The upper and lower boundaries as derived by sigma-clipping are indicated in orange.
The vertical axes are in nanotesla.

many minutes are marked of the total minutes that satisfy Dst or SYM-H below
this threshold. Such qualifiers can give information about how much of the main
phase and beginning of recovery phases for strong storms are successfully identified.

• Minutes during very quiet days
As the baseline is capturing quiet sources well, the likelihood that the filter baseline
needs to be replaced during such quiet periods is very small. Therefore any algorithm
should ideally not mark minutes during CK48 days.

As quantitative measures, these qualifiers can give a first glimpse upon the performance
of an algorithm. However, they give no information about the location and concentration
of the marked minutes, e.g. for a strong event with Dst< −50 nT we do not know how
many minutes of the individual event is eventually marked as a disturbance. Geomagnetic
storm studies, as discussed in the introduction, provide lists of strong storms detailing
their strength, start and end-times, chosen by certain aspects like isolated events and
minimum Dst or SYM-H. However, as we have seen before, not all periods for which we
want to replace the baseline are associated with strong Dst/SYM-H and not all storms
with clear Dst/SYM-H have strong enough signatures to motivate a baseline replacement.
At this point, I would like to remind the reader, that Dst and SYM-H are derived from
four and six magnetic observatories, respectively, distributed over longitude. Even though
the storms from the storm lists are quite intense, local variations in the deflection of the H
component can still occur due to the complex morphology of storms and related current
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systems within the magnetosphere. This can lead to events, that have clear signatures
in Dst and SYM-H, but are almost non-existent in measurements from specific other
observatories, even if they are part of the index network. One of these examples is the
storm from 27th July 1999 as listed in the storm catalogue of Li and Yao (2020). Even
though it is quite intense in Dst, the components of X and Y at CLF are only marginally
affected. The related figure can be found in appendix D.1. During these types of storms,
the filter baseline actually would appropriately describe the long-term and quiet variations
and would not need to be replaced. This implies that we cannot directly adopt these storm
lists as appropriate storm qualifiers for the baseline replacement decision. Therefore, to
get a better qualitative insight for the performance of an algorithm, we will need a tailor-
made list of disturbances for which we would like to replace the baseline. It should be
pointed out that such a list is valid only for the station for which it is derived and is not
automatically usable for other stations. Although, the likelihood that such a disturbance
list is applicable for geographically nearby stations is high.

To establish a disturbance list for CLF, we can use the storm list provided by Li
and Yao (2020) as a basis. It contains 95 storms during 1998 to 2011, covering most of
SC23. The storms originate from geoeffective ICMEs and have a consistent definition
provided by the authors for the end of their recovery phases. For each year between 1998
and 2011, three storms are chosen, one per each quadrimester to evenly distribute them
(January to April, May to August, September to December). If during a particular year
and a particular trimester no storm is recorded in the storm list or no clear signatures
were present within the measurements of CLF, a disturbance with a clear signature is
manually identified within the period, independent of the Dst intensity. This results in a
storm catalog of 39 events during which the filter baseline is supposed to be replaced at
CLF. The full list of start and end times, minimum Dst and signatures in CLF can be found
in appendix D.3. This list covers various morphologies and intensities of disturbances that
we expect an algorithm to detect but we cannot claim that it is complete. We can now add
further qualifiers, namely how many of the events from the disturbance list are detected
and to which extend. We consider an event detected if at least 90% of it is marked as
a disturbance and missed if less than 10% is marked. Events marked in-between 10%
and 90% is considered as partially detected. This allows to see how well an algorithm
performs in detecting the individual events.

Altogether, we can deduce 7 key performance indicators (KPIs) that can support the
evaluation of algorithms with respect to disturbance identification:

1. TOT: Percentage of total minutes marked, should be between 25-35%
2. Dst: Percentage of total minutes marked with Dst below −50 nT, should be close

to 100%
3. SYM-H: Percentage of total minutes marked with SYM-H below −50 nT, should

be close to 100%
4. CK: Percentage of total minutes marked during CK-days, should be close to 0%
5. Detected: Amount of events from disturbance list which are detected, i.e. more

than 90% of the individual event is marked, should be ideally 39
6. Partially Detected: Amount of events from disturbance list which are partially

detected, i.e. between 10% and 90% of the individual event is marked, should be 0
7. Missed: Amount of events from disturbance list which are missed, i.e. less than

10% of the individual event is marked, should be ideally 0
We derive this set of disturbance detection qualifiers for the long-term filters together
with the derived limit method and for the 6h-filter responses and residuals together with
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the sigma-clipping method and summarise them in table 6.1. The first thing we notice
is that only a fraction of between 1991 and 2019 is marked as a disturbance. For the
sigma-clipping method that can be related to the fact that only individual minutes are
marked, as it looks for outliers and not full intervals. For the derived limit method which
does mark intervals, this can be related to the detection of only very strong events which
are not that frequent. As can be seen in the percentage of strong Dst and SYM-H values,
it catches already around 80% of these. The percentage of marked CK-day minutes is
reasonably low for all methods. Coming to the disturbance list, h̄>24 is able to detect 4
events and partially detects 28 and thus performs the best in comparison to the sigma-
clipping method. Still, it misses 7 events. This can be related to the fact that these events
do not have a strong enough signature in h̄>24. The performance for the sigma-clipping
is generally low. However, it is evident that it performs better for the residuals than the
6h-filter for both components. These considerations re-assures the decision of preferring
the residuals over the 6h-filter for disturbance detection. However, it also suggests that
the presented methods need further considerations.

Table 6.1: KPIs for the derived limit method applied on the long-term filters h̄>24 and
standard sigma-clipping on the 6h-filter responses x6, y6 and residuals for X and Y . In
the header the ideal value is indicated beneath each KPI.

TOT Dst SYM-H CK Detected Partially Detected Missed
ideal value 25-30% 100% 100% 0% 39 0 0

h̄>24 8.17 79.67 84.31 0.21 4 28 7
x6 1.59 6.63 7.61 0.23 0 10 29

resX 2.63 9.23 10.58 0.39 0 11 28
y6 1.30 5.62 6.55 0.18 0 6 33

resY 2.69 9.71 11.20 0.46 0 11 28

6.1.4 Further Parameters for Disturbance Identification
The previous subsections focused on filter responses and corresponding residuals for the
identification of disturbances. Several other parameters, including all filter responses and
derivatives thereof, different representations of the information and the signals themselves
were evaluated with the help of the KPIs and eventually discarded. The following list
briefly introduces each of the considered parameters.

• Residuals of Filters and Models
In chapter 5.2.2 we introduced three models to reproduce the quiet variations. As-
suming that these provide a sufficiently good description of the actual quiet varia-
tions, we expect the difference between the filter response and the respective model
to be significantly higher during disturbances than during quiet periods. Due to
strong, intrinsic day-to-day variability and general performance of the models, how-
ever, there are consistent offsets within the residuals that can be partly related to
phase shifts between the actual data and the models. This leads to high amplitudes
within the residuals, even during quiet days and thus are not suitable to identify
disturbances.
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• Extrema of Filters
Assuming that disturbances increase amplitudes significantly, we can apply sigma
clipping to the running maxima and minima of the individual (sub-)diurnal filter
responses and apply sigma-clipping to identify days or periods which exceed typ-
ical values. However, again, due to the strong day-to-day variability, the overlap
between weak-to-moderate and quiet extrema is consistently obliterated. For the
combined diurnal filter responses xD and yD, we saw that the day-to-day variability
is in the order of 20% to 30% from one day to another. Using the maximum (or
minimum) of xD, yD and comparing it to the consecutive maximum (or minimum),
we can mark it as a disturbance when the difference exceeds the 30% boundary.
Similar to the individual filters, this method did not produce convincing results.
The main issue with this approach is that the maximum may be quite small during
one very quiet day and may be relatively large on the next, still, quiet day, leading
to overwhelmingly many quiet days being marked.

• Envelope and Phase of the Signals
Each of the filter responses z are periodic functions that can be written as

z(t) = A cos (ωt + ϕ) ,

Developing the signal around t ± δt and using trigonometric identities, we obtain
the envelop of its amplitude A:

z(t − δt) − z(t + δt) = 2A sin (ωt + ϕ) sin (ωδt)

⇐⇒ A =

√√√√√√√s(t)2︸ ︷︷ ︸
=:a

+
(

s(t − δt) − s(t + δt)
2 sin(ωδt)

)2

︸ ︷︷ ︸
=:b

=:
√

a(t)2 + b(t)2 ,

and the sine and cosine components of the phase

sin ϕ(t) = − a

||a + b||
sin(ωt) + b

||a + b||
cos(ωt)

cos ϕ(t) = − a

||a + b||
cos(ωt) + b

||a + b||
sin(ωt) .

The envelop and phase, as well as their combinations was then analysed for each of
the filter responses with the sigma-clipping method. Especially for the phase, the
strong intrinsic day-to-day variability overshadows variations.
Additionally, we investigated the interaction among the individual filters (including
their phase and amplitude) to see if any collective behaviour can be leveraged to
detect disturbances. While very intense events are clearly identifiable, the collective
activity is fully overlapping for quiet periods and moderate events. The same was
done to compare the filter responses of both components to investigate potential
interactions between X and Y , giving similar results.

• Horizontal Field H and Total Field F
Each component of the magnetic vector field B = (X, Y, Z) is a projection of the
total magnetic field and thus implies information compression and loss. To avoid
missing potentially important information by considering each component alone, we
investigated the horizontal field H and the total field F , as well as the respective
filter responses. No further information has been found.
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• Clockangle between X and Y
Many magnetic indices are build on the H component as it is prone to storm signa-
tures. This means that its components X and Y and their directions are influenced
too. Thus, the phase between them defined as ϕ = atan(Y, X) may hold significant
information. Additionally, the phase of each of the filters was analysed with no
proper results.

• Coordinate Transformation
In all our analysis we have been using the measurements in the local geographic
NED frame as defined in chapter 2.6.3. To exclude missing storm information due
to the coordinate system, we transformed the data into the IGRF magnetic frame
and re-ran the analysis. No striking differences have been observed.

• Time Derivative of the Magnetic Field
In GIC studies, the time-derivative dB/dt of the geomagnetic field is analysed and
thresholds are derived, like has been done e.g. to determine strong SSC in Bailey
and Leonhardt (2016). With the knowledge that storms introduce a stronger dB/dt,
we may attempt to characterise storms and quiet variations by their time derivatives
similarly. This can be done for the components themselves, as well as for the long-
term filters. Unfortunately, as weak-to-moderate storms have amplitude signatures
in the order of typical quiet variations, this approach is not giving good results for
these regimes. However, strong storms can be detected with this method.

Many of the above mentioned approaches have in common, that the level of perturbation
induced by weak-to-moderate storms and disturbances is in the order of the level of
the typical quiet variation. Due to this tight overlap, it is almost impossible to find
meaningful, global thresholds. This also implies that whatever method and parameter is
used, also the ones we eventually use, the results will never be black and white, but a
grey-zone in-between.

6.2 Algorithm to Detect Disturbed Periods
With the disturbance proxies, i.e. the long-term filters and residuals, we can attempt
the creation of an algorithm that identifies periods during which the filter baseline will
be replaced. Table 6.1 was useful to support the decision of using the residuals over the
6h-filter. Apart from that the main conclusion to be drawn from it is that the basic
methods of derived limit and sigma-clipping are not reasonable to detect coherent periods
of disturbances. The derived limit method does not take into account parts of the main
phase and onsets but at least produces continuous intervals of disturbances. The sigma-
clipping identifies individual minutes above and below a certain threshold. Therefore, we
will adapt these two methods and use its combination to determine disturbance intervals
during which we would like to replace the filter baseline.

6.2.1 Adapted Method for the Long-term Filter

Using a derived limit for the de-trended horizontal intensity h̄>24 results in the identifi-
cation of parts of the main and recovery phases of stronger events. In the upper panel of
figure 6.8, h̄>24 and hL is illustrated as discussed in chapter 6.1.1. All values beneath hL

are marked as a disturbance tD, indicated in orange. The lower two panels indicate the
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resulting disturbance intervals tD on the components X and Y (also in orange). It is clear
that the onset and parts of the main phase are missed. To overcome this issue, the most
recent local maximum tmax is identified marking the start-time of the event(indicated by
the yellow triangle). Looking for the onset in this manner is in agreement with typical
definition of storms, where the local maximum before a Dst minimum is used as start-
time, see chapter 2.4.2. As the shape of the long-term filter response is a wave, such a
maximum can always be found, even if the storm is not accompanied by a clear SSC. The
time-interval tO (in yellow) up until tmax is appended to tD. The algorithm defined in this
manner produces the disturbance intervals tO + tD as illustrated in the lower panels of
figure 6.8 for the X (left) and the Y (right) components. Please note, that the intervals
for both components are the same and this method is limited to identifying strong storms.
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Figure 6.8: Illustration of the algorithm to detect strong storms with the de-trended
horizontal intensity h̄>24 from chapter 6.1.1 in the upper panel. The lower panels show
the corresponding identified intervals on the X (left) and the Y (right) components. All
vertical axes are in nanotesla.

Using the KPIs from section 6.1.3, we can compare the initial method of derived limit
with its adapted counterpart as summarised in table 6.2. For the adapted derived limit
method on h̄>24, the KPIs are consistently better, catching even more of the strong Dst
and SYM-H values while detecting very few quiet minutes. Still, this method alone misses
6 of the events, which can be related to the fact that only very intense events are identified.

6.2.2 Adapted Method for the Residuals
In figures 6.6 and 6.7 the upper and lower boundaries are derived using the 1σ confidence
interval of the sigma-clipping on the residuals for X and Y . These cut-offs are quite tight
and narrow-down significantly during extended quiet periods. Furthermore, disturbances
are associated with boundary broadening which holds the risk that beginnings of and
subsequent disturbances are hidden and remain unnoticed. The nature of the residuals,
similar to the (sub-)diurnal filter responses, is to oscillate from negative to positive values
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crossing the zero-line in-between. Defining upper and lower boundaries enable the identi-
fication of single outliers, but misses values that occur when the residuals fluctuate from
a positive to a negative outlier and vice-versa, meaning the identification of full intervals.
It only makes sense to replace full intervals within the filter baseline rather than isolated
minutes. We will now introduce a 2-step algorithm based on sigma-clipping that addresses
these issues. Step 1 covers the determination of an appropriate boundary that catches as
many disturbances as possible and step 2 deals with the issues of the zero oscillations.
Supporting illustrations for these steps are found in figure 6.9, showing the X component
on the left and the Y component on the right.

• Step 1: Determining quiet levels
The sigma-clipping enables the definition of quiet level boundaries. As pointed
out, the 1σ interval is too constrained and disturbances may be missed due to the
featured broadening. Therefore we will adapt the quiet level boundary by combining
a loose and a tight boundary, bL, bT .

– Step 1.1: Definition of loose and tight boundaries
To allow for a more relaxed border, we apply the sigma-clipping with 3σ on
each of the residuals resX and resY , i.e. the boundaries are defined by the
moving average µ1 and moving standard deviation σ1 over the past 6 days:
b1 = µ1 ± 3σ1, keeping the same window-length as in chapter 6.1.2. This
boundary b1 is derived on, and thus contains, influences of very strong outliers.
We re-calculate the moving average µ2 and moving standard deviation σ2 only
on the 3σ constrained values i.e. for −b1 < res < b1, providing us with the
loose boundary bL = µ2 + σ2.
For the tight boundary, we remove once more the outliers from the data, i.e.
−bL < res < bL and generate the weighted, moving mean µ̂ and standard
deviation σ̂. The weight function is half a cosine which, for t = t0, is 0 at
t = t0 − 6d and 1 at t = t0. This ensures that disturbances that are farther in
the past influence the tight boundary less than disturbances that are closer in
time. The tight boundary then writes at bT = µ̂ ± 3σ̂. Both boundaries (bL in
yellow and bT in purple) are indicated in panels (a) in figure 6.9.

– Step 1.2 Combination of bL and bT

By default, we assume quiet time and apply the loose boundary bL. As soon as
a value above bL is detected, the tight boundary is applied for the successive
12 hours. The resulting quiet level boundary b is depicted in panels (b) of
figure 6.9 in orange. Each residual that is above (or below) this boundary is
considered a disturbance candidate minute tC . The resulting candidates on
each of the components are indicated as orange dots labelled tC in panels (c)
of figure 6.9.

• Step 2: Defining disturbance intervals
The result of Step 1 leaves us with an irregular collection of storm candidate minutes
tC . Unsurprisingly and from panels (c) in figure 6.9, it is evident that occurrences
of tC are clustered. We will first create full disturbance candidate intervals by
adding values that belong to oscillations around zero, i.e. when the values oscillate
in between the upper and lower quiet level boundaries b. We then check if these
intervals belong to a disturbance by defining the minimum disturbance length ∆tmin.
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– Step 2.1 Incorporation of oscillations
The typical disturbance event induces residuals that fluctuate from above to
below the quiet boundaries b, implying that values within the quiet bound-
aries are missed although they belong to the same event. Such that, during
the event’s duration ∆t, the values inside |b| should be incorporated within
disturbance candidates. Therefore, we define the maximum event time ∆tCI

that relates two disturbance candidate minutes tC1 to tC2. If the duration ∆t
between tC1 and tC2 is less than ∆tCI then tC1 and tC2 are considered to be-
long to the same event. All minutes tCI (in yellow in panels (d)) within ∆t
are then added to the storm candidates, resulting in full disturbance candidate
intervals (or events). By experience and empirical refinement, we determined
∆tCI = 8hours.

– Step 2.2 Final Disturbance intervals
It is possible that the method of using a maximum ∆tCI between two distur-
bance candidates marks quiet periods. This is the case for e.g. the interval
around 16th of December on the X component in panel (d) right after the
moderate event. For the identification of such intervals, we define a minimum
disturbance time ∆tmin = 15h. Any disturbance candidate interval that is
longer in duration than ∆tmin is considered a final disturbance interval, other-
wise it is removed. The time of 15h corresponds to a typical duration of shorter
storms and agrees well with empirical refinement.

The final disturbance intervals tD produced by this algorithm are illustrated in panels
(e) for the X component (left) and the Y component (right) in figure 6.9. We can note
here, that the marked intervals are not necessarily identical for both components and
do not need to be geoeffective storms as is the case for the detection with the long-term
filters. Rather this method identifies intervals for which the filter baselines show consistent
discrepancies, not following quiet variations for longer periods.

Using the KPIs from section 6.1.3, we can also here compare the initial method of
residuals with its adapted counterpart as summarised in table 6.2. The adapted method
for the residuals of X and Y performs significantly better than the initial method in
terms of catching strong Dst and SYM-H values. Also when it comes to detecting specific
events, we clearly see an improvement, as the number of detected events raises from 0 to
16 for X and to 20 for Y while the number of partially detected events raises from 11 to
22 for X and to 16 for Y . This clear improvement can be related to the fact, that through
the sigma-clipping individual outliers are marked, while the adapted method generates
intervals of at least 15 hours. Still, the adapted method misses 1 event for X and even 3
for Y .

6.2.3 Combining the Adapted Methods
As a resume, we conclude that the adapted residuals method is able to catch weak and
medium, as well as strong events, and the derived limit method to detect strong events.
Directly combining these methods holds the final disturbance interval detection. Its out-
come is illustrated in figure 6.10. Please note, that the method for the residuals of X are
combined with the derived limit method on h̄>24 to give the intervals for the X compo-
nent, and the method for the residuals of Y is combined with the derived limit method
on h̄>24 to give the intervals for the Y component, as indicated by the caption of figure
6.10 and notation in table 6.2 by resX+h̄>24 and resY +h̄>24.
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Figure 6.9: Visualisation of the two-step algorithm that is used to identify disturbance
intervals for the residuals of X on the left and Y on the right. Residuals are in blue and
components are in black. Panels (a) show the loose and tight boundaries bL and bT in
yellow and violet, respectively, as defined in step 1.1. Panels (b) show the final upper and
lower boundaries b (in orange) as defined by the combination of bL and bT in step 1.2.
Panels (c) show the identified disturbance candidate minutes tC (in orange dots) on the
component (black) as outcome of step 1. Panels (d) indicate the added minutes tCI (in
yellow dots) during the residuals’ oscillations around zero, as defined in step 2.1. Panels
(e) show the outcome of Step 2, and thus the final disturbance intervals tD (in orange),
after removing intervals with lengths below the minimum duration as defined in step 2.2.
All vertical axes are in nanotesla.
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Figure 6.10: Full identification of disturbance intervals as produced by combining the
adapted methods (resX+h̄>24 and resY +h̄>24) for which the filter baseline should be
replaced for the X (upper panel) and Y (lower panel) component. The intervals are
marked in orange, and the filter baseline in black. The X and Y components are in grey
in the background. The vertical lines mark a moderate and a strong events that occur
during this time interval. The vertical axes are in nanotesla.

In figure 6.10, during the first days of the displayed period between 9th and 29th of
December 2009, we observe a quiet period. The filter baseline follows the smooth X and
Y variations as expected. Between 13th and 16th of December, a moderate event occurs
which would be underestimated by applying the filter baseline. It is detected by both
residuals, but slips through the derived limit for the long-term filter. The onset of this
event is missed by a few hours, whereby the recovery phase was identified appropriately.
Afterwards, another rather quiet period of a few days is observed until a second, stronger
event occurs on December 19th and disturbs the components significantly for several days.
Most of this period is identified as disturbed by both algorithms and results in a prolonged
disturbance interval. For the onset and main phase of this storm, it is clear that using the
filter baseline would result in underestimation of its strength. However, with regards to
the event’s recovery phase, it is not entirely apparent up until which point in time the filter
baseline produces reliable results again, as no obvious quiet pattern can be determined.
The answer is not trivial as we do not have a ground truth for how a baseline should look
like, especially after a strong event and thus during its recovery phase. It is not obvious
whether these succeeding, slightly disturbed variations are still within or already outside
the limits of the typical day-to-day variations.

In order to get a more quantitative view on the algorithms, we look at their KPIs
in table 6.2. The two combined methods do not miss any of the events in the list and
both identify more than 90% of strong Dst and SYM-H. The amount of detected events
is increased. However, the 13.25% of quiet minutes is marked as a disturbance and the
total identified minutes (TOT) is rather high for Y .

All in all, the adapted methods and their combination are a clear improvement to
the initially presented methodologies as we have seen qualitatively and quantitatively.
However, there are still some caveats of the methods. By deriving upper and lower
boundaries for the residuals, we had to overcome the issue of the zero oscillations. We



6.3. QUIET VARIATION REPLACEMENT DURING DISTURBANCE-TIME 123

Adapted Method TOT Dst SYM-H CK Detected Partially Detected Missed
ideal value 25-30% 100% 100% 0% 39 0 0

h̄>24 13.18 85.44 89.51 0.54 15 18 6
resX 31.42 68.51 73.60 8.92 16 22 1
resY 35.35 71.68 76.50 12.36 20 16 3

resX+h̄>24 35.55 90.98 94.36 9.33 24 15 0
resY +h̄>24 39.16 91.95 94.84 12.82 27 12 0

Table 6.2: KPIs from section 6.1.3 for the adapted derived limit method applied on the
long-term filter h̄>24 and the adapted sigma-clipping on the residuals for X and Y , as
well as their combination. In the header the ideal value is indicated beneath each KPI.

did so by defining two durations: a minimum duration for the effects of a disturbance
∆tCI and a minimum duration of a disturbance to be considered ∆tmin. This implies
that any disturbance that manifests itself beneath 15h is missed, as well as events that
cause zero-oscillations with recurrences above 8h. whereby the latter case seems to be less
likely to happen, the minimum disturbance time puts a real restriction on the identified
intervals. This should be kept in mind.

6.3 Quiet Variation Replacement during Disturbance-
time

The combined, adapted algorithms from the previous chapter, i.e. resX+h̄>24 for X and
resY +h̄>24 for Y , provide intervals during which the filter baseline follows the disturbance
induced variations closely, which leads to an underestimation of its effects. To avoid this,
we look for a possible substitution of the filter baseline during the identified intervals.
As discussed in the introduction, up to this date there is no ground truth on how quiet
variations are supposed to look like quantitatively during disturbances and storm-time.
The very least we will impose on the substitution, is that it incorporates typical quiet
variations. As has been a common strategy up until now, we will split the substitution
baseline into long-term and (sub-)diurnal variations and treat each of them separately.

Starting with the substitution of the long-term filter response, we will use the moving
average over the past 3 days and denote it x̃>24 and ỹ>24. This smooths disturbance
variations and accounts for shorter trends that can be induced by disturbances that would
be concealed in longer moving windows.

We will now look at how we can replace the combined (sub-)diurnal variations xD and
yD. In chapter 5.2.2 we introduced three models that aimed at reconstructing observed
quiet variations for the diurnal and semi-diurnal filter responses x24, y24 and x12, y12.
While the two analytical models, based on parameters like the solar longitude, local time
and solar activity, reproduce general trends well, the shift model that is based on the
filter responses themselves reproduces the intrinsic day-to-day variations the closest (also
see table 5.1). To expand this model for the full combined (sub-)diurnal variations we
develop it for the 8h- and 6h-filter analogously to what has been done in (5.13) and (5.14).
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The full model then writes as

x̂D,shift = x̂24,shift + x̂12,shift + x̂8,shift + x̂6,shift (6.3)
ŷD,shift = ŷ24,shift + ŷ12,shift + ŷ8,shift + ŷ6,shift (6.4)

for both components. There is one important limitation we need to consider: at time-
step t0 we can only use this model up until t0 + 6h, as we develop it also for the 6h filter.
Assuming that a disturbance starts at t0, after t0 + 6h this model would be generated on
disturbed information, namely the disturbance-affected 6h-filter response x6. To avoid
this issue, we do not use the model directly, but take its daily variation two days before
the disturbance start t0, i.e. t0 − 48h to t0 − 24h. Using the 48-24 hours instead of
the 24-0 hours before, ensures that potential disturbance onsets are not included in the
replacement. This gives us a 24-hour template with quiet daily variations. As disturbances
may last longer, we repeat this template and extend it to fit the full disturbance length.
The obtained replacement for the combined (sub-)diurnal variations with the shift model
is denoted as x̃D,shift and ỹD,shift.

We know that the combined (sub-)diurnal filter responses xD and yD follow the quiet
variations well during quiet periods. Another possibility to replace them during distur-
bances is thus to use their variations from a previous, quiet interval. We can derive such
intervals as we have done for the shift model by taking the variations from the previous
48h to 24h as a template and extend it to the length of the disturbance. We denote it as

x̃D(t) = xD(t − 24h) (6.5)
ỹD(t) = yD(t − 24h) . (6.6)

With this approach we obtain two substitution baselines by the superposition of the
long-term filter replacement with the two combined (sub-)diurnal filter replacements. The
baselines write as, for the X component

x̃B,shift = x̃>24 + x̃D,shift (6.7)
x̃B = x̃>24 + x̃D , (6.8)

and for the Y component

ỹB,shift = ỹ>24 + ỹD,shift (6.9)
ỹB = ỹ>24 + ỹD . (6.10)

To ensure smooth transitions, we apply a spline on 3 hours before and after the start
and end of each disturbance. Figures 6.11 and 6.12 illustrate the filter baseline with both
incorporated substitutions. Overall we can say that both replacements are quite similar
and differ mainly on smaller scales. The differences manifest in small-scale ripples within
the shift model x̃B,shift and ỹB,shift (in orange) compared to the smoother x̃B and ỹB (in
green). For the moderate event between 13th to 16th of December both replacements
show smooth variations. The possible onset of this event is not fully detected, such that
the peak in X is preserved and will not be present in the residuals (after removing each
baseline from the measurements). For the intense event between 19th to 22th December,
the variations are also smooth for both replacements and we see that the general trend
of both components, especially the one of X, are systematically followed. As for the
disturbance detection, the period after the strong event is quite complex. The baseline is
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Figure 6.11: X Component: Comparison between the two baseline replacements. The
component is in grey, the filter baseline in black. The shift model replacement x̃B,shift is
in orange and the combined (sub-)diurnal replacement x̃B is in green. The vertical axes
are in nanotesla.
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Figure 6.12: Y Component: Comparison between the two baseline replacements. The
component is in grey, the filter baseline in black. The shift model replacement ỹB,shift is
in orange and the combined (sub-)diurnal replacement ỹB is in green. The vertical axes
are in nanotesla.

replaced according to the identified intervals and smooth, recurrent patterns are hard to
identify for both baseline replacements. As mentioned before, it is not trivial to determine
an appropriate baseline during this period.

Based on the two examples, we can make the qualitative choice of using x̃D and ỹD as
they incorporate less small-scale features which are not necessarily present in the typical
quiet variations. Further examples of this final baseline for the moderate event of mid-
December 2002 is given in appendix E.2.

The problem of choosing a baseline is somewhat badly conditioned as we do not know
the ground truth. A thorough investigation would be appreciated that analyses these
baselines for sets and types of various events, ideally covering all solar cycle phases and
seasons and tailored for specific purposes (global/local effects, certain physical phenom-
ena like ring current or FACs, etc). Such an investigation is ideally done by involving
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the corresponding communities accompanied by transparent result discussions, including
advantages and drawbacks of each baseline method.

6.4 Comparison with Existing Baselines
As there is no ground truth of quiet variations during geomagnetic storms and other
disturbances, the applicability and validity of baselines is hard to determine, such as for
the variations we observed after the 25th of December in figure 6.11 and 6.12. Van De
Kamp (2013) uses a spectral analysis to show that only sources acting on interesting
frequencies are contained within the baseline. Naturally, as the filter baseline is based on
frequency regimes, only the fast variations that are most likely related to storms are part
of the residuals. All the other, above 6 hour variations, are retained in the baseline. This
is evident in Figure 4.2. Additionally, chapter 5 gives a detailed analysis on what sources
make up the quiet-time filter baseline and we adapted the baseline during storm-time.

What Van De Kamp (2013) did and what we aim for here, is to compare the derived
baseline with other baselines, namely the SuperMAG one from Gjerloev (2012) and the
FMI one from Sucksdorff et al. (1991). The method from Van De Kamp (2013) and the
one for the PC indices from Troshichev and Janzhura (2012) are designed for auroral and
polar observatories and thus are out of range for low- and mid-latitudes considered in this
work.

To determine the baseline, the FMI method performs a 5th degree harmonic fit to
hourly means, which are determined taking into account apriori information such as mag-
netic latitude and local time (Sucksdorff et al., 1991). The original software written in C
is made available through the long-term ISGI repository. The method used by the Super-
MAG service consists of rotating the magnetic data into an arbitrary magnetic coordinate
system, followed by determining a daily baseline, annual trend and residual offset that
differs for each of the magnetic field vector components (Gjerloev, 2012). Their base-
line data is not directly accessible and several steps had to be executed to make them
available for this work. SuperMAG provides the actual and baseline removed data in a
magnetic local frame that uses an arbitrary declination. In order to compare them to
the original data as provided by observatories from INTERMAGNET, SuperMAG data
needs to be transformed to the local geographic frame first, followed by subtracting the
baseline removed data from the measurements in order to retrieve the baseline. Hereafter
we compare our method to the FMI method, referred to as xK , yK ; and to the SuperMAG
method, referred to as xS, yS. As such, Figure 6.13 demonstrates our baseline (green) in
comparison with the X, Y components (grey), the FMI (blue) and the SuperMAG (red)
baselines, whereby grey shaded time intervals indicate non-CK48 days.

During magnetically quiet days (white background), our and FMI baselines closely
follow the magnetic activity, capturing the day-to-day variability smoothly and showing
little discrepancies between them. The SuperMAG baseline xS, yS shows some distinct
differences, especially for the X component. The actual measurements are not always
followed closely, e.g. there is a clear positive and negative offset between the magnetic
observatory data and SuperMAG estimation of the quiet baseline for the X component
during the afternoon / night of December 10th and 13th. In general, the SuperMAG
method follows a rather steady pattern showing minor differences from one day to another.
As shown before, there is a non-negligible day-to-day variation within the signal, which
is most likely induced by atmospheric drivers. These variations are well captured by
xB, yB and xK , yK , but less with xS, yS indicating that it may lead to overestimation of
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Figure 6.13: Comparison of baseline methods. The methods of the introduced baseline
(green), FMI (blue) and SuperMAG (red) for X, Y components (grey) at CLF during
winter 2002 are presented. The grey shaded areas indicate non-CK48 days. All vertical
axes are in nanotesla.

magnetospheric drivers during quiet days with increased day-to-day variability. To be able
to quantitatively compare baselines, we calculate the difference between ours and each of
the two other methods for all CK48 days of 2009, during a minimum of solar activity.
We make the simple assumption that this difference can be described by a Gaussian
distribution, using its variance to quantify deviations. For the X component, we find a
variance of 1.6 nT, and for the Y component 1.7 nT between our baselines and the FMI
ones; and 6.2 nT, and 4.6 nT between our baselines and SuperMAG ones. This implies that
our determination of baselines can be used instead of the FMI method without causing
major changes in the baseline reconstruction during magnetically quiet days. Additionally,
the filtering method together with the replacement during disturbances is able to produce
baselines without any further information than the magnetic measurements themselves,
whereas the SuperMAG method needs the magnetic latitude as an input, which is evolving
over time and not trivial to be determined in real-time. This property gives the introduced
method the main advantage of being directly applicable, i.e. as soon as the geomagnetic
field data is available.

Let us now come to the disturbed period. During non-CK48 days, indicated by the
grey shaded area in Figure 6.13, clear differences between the three baseline methods
are evident. Our filter method follows the activity very closely during the start of the
event and then continues with similar variations as during the quiet days before. The
FMI method on the other hand follows the storm signatures clearly, reacting to the
strong deflection. The SuperMAG baseline simply continues it’s course. As we do not
know the ground truth for these variations we can only discuss possible errors. For
the FMI method, as it closely follows the activity, it would suggest that the storm is
underestimated, rather similar to using the original filter baseline. For the SuperMAG
baseline, the quiet variations do not closely follow the magnetic field’s variations. For our



128CHAPTER 6. ADAPTING THE FILTER BASELINE DURING DISTURBANCES

adapted filter baseline, as it follows the onset of the storm rather closely, this implies that
it underestimates the onset which effects may not be reflected in the residuals.

6.5 Discussion
The first two parts of this chapter deal with the identification of intervals for which the
filter baseline is not appropriate. This is followed by the replacement with an adapted
baseline containing quiet variations during the identified interval. We then compared
the full baseline with existing ones, showing that the presented one can be used as an
appropriate baseline in general. Additionally, the introduced procedure can be executed
in real-time as it works only on the filter data itself. No further input is required to derive
the full baseline. As there is no ground truth in what a baseline has to look like, the user
of a baseline needs to be aware of how it is derived and where the caveats are. In the
following we provide a discussion that should be kept in mind.

The identification of when to replace the filter baseline is a complex problem. First of
all, periods and conditions need to be determined for which the filter baseline underesti-
mates disturbance impacts. To answer this question a set of events needs to be determined
for which underestimation happens, implying that the effects are known. Whereby this
may be easier for geomagnetic storms and events with high geoeffectiveness, effects of
weak to moderate events are not as clear to be determined accurately. In the course
of this chapter, we encountered such problems with e.g. event (4) in figure 6.7 or for
the prolonged disturbed period after 25th of December in figure 6.10. To some extent,
choices have to be made here which the user needs to take into account. We can con-
clude that the disturbance determination as introduced here is at least consistent as it
is derived on fixed, unchangeable rules that treat each data point the same way. For
the presented methodology we saw that e.g. onsets of weak to moderate storms are not
fully reflected within the residuals when applying the full baseline. Other caveats include
that the derived-limit on the long-term filters is based on the horizontal intensity and
as it is indiscriminately used for both components it may lead to false-positive intervals.
The sigma-clipping method is build on the premise that the quiet variations make up the
majority of the signal and that storm variations are stronger and occur less frequently.
While this is certainly true during solar minimum, we cannot guarantee this holds during
solar maximum when external driving is significantly increased. For the adapted sigma-
clipping, a parameter-tuning with the help of the KPIs can help in identifying ideal values
for e.g. the minimum duration of disturbances ∆tmin and minimum duration of distur-
bance effects ∆tCI . Other caveats may be overcome by investigating further methods,
in addition to the sigma-clipping such as discussed in 6.1.4. Even though the presented
KPIs are a good start, more refined KPIs including extended storm and disturbance lists,
as well as more granular detection classes can help improve methods more quantitatively.

The used replacement during disturbances is based on variations from two days before
the start and then duplicated for the duration of the disturbance. This implies that the
baseline assumes the same variations of this interval during the entire disturbance length.
We have seen that there is an intrinsic day-to-day variability within quiet variations.
Such a variability is not taken into account by the introduced replacement. Fair enough,
as there is no knowledge of a baseline during storm-time, we may choose to leave out
day-to-day variability during storm-time. Such an approach has been also followed by
Gjerloev (2012) and Van De Kamp (2013). Additionally, Van De Kamp (2013) improves
his templates by using variations from before and after the event. For an operational, real-
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time determination we have no information about conditions after a disturbance event
and cannot apply similar strategies. However, for post-processing such methods should
be considered. As pointed out on several occasions, the biggest challenge in quantifying
baselines is that there is no ground truth. The concept of a baseline was introduced by
Bartels et al. (1939). Since then Mayaud (1980) tried to concretise this concept. Up
to today, there is no commonly accepted way of how a baseline has to look like. Their
guidance still is preserved. The baseline should be a smooth curve that is composed of the
quiet sources of the geomagnetic field. For the filter baseline this is exhaustively showed in
chapter 5. Furthermore, the fact that there is no quantitative way to validate quiet curves
remains especially true during storm times. For example, in Figure 6.13 the adapted filter
baseline xB, yB and the SuperMAG baseline xS, yS during the two disturbed days are
very similar to their quiet curve of the preceding day, which can be interpreted physically
as a fully developed Sq current cell. However such a full system does not necessarily form
during a disturbance event (Le Huy & Amory-Mazaudier, 2008) which may be even the
case in this example, as the actual measurements are very different from the expected Sq
current signature. In order to support the choice of which quiet variations should be used
to replace the baseline during disturbance-time, the actual derivation of the index with
different baselines may be helpful. This way, a set of possible indices is created, which
can be used to evaluate effects of known events and support the decision of which baseline
performs better.

It is important to keep such considerations in mind when employing this baseline,
especially for index derivation purposes. All in all, the presented baseline is consistent
and contains quiet variations appropriately, for CLF.

According to chapter 4.1, we chose CLF to illustrate the methodology and results
because it is a representative station for mid-latitudes and provides ready access to con-
siderably good data quality. The question remains if the presented method is applicable
for other stations such that the results hold.

In fact, the limit hL needs to be derived for each station separately. Investigations show
that h̄>24 is reasonably well correlated with all stations in mid-latitudes considered in this
work, see figure 4.1. The corresponding determination of the SYM-H limit is, on the other
hand, more tedious. For each station, the Sq current patterns need to be investigated
according to SYM-H level, as has been done in figure 6.4. Ideally, objective criteria should
be put into place to decide at what point the Sq patterns are too disturbed and thus define
the SYM-H limit. Once such a limit is defined, it may be applied for periods over a few
years but then would need re-calibration as the secular variation moved the station to
different magnetic latitude, changing the Sq patterns at the specific station. Such a re-
calibration, however, does not impact the near real-time operability. As this method is
supposed to mark strong events, it may be also appropriate to use a SYM-H limit that is
commonly associated with strong events, like SYM-H< −50 nT. Such a threshold would
need to be discussed and elaborated with the community.

The adapted sigma-clipping works as long as residuals react clearly to disturbances
which is largely guaranteed by the signal filtering itself. The residuals are generated
by removing all variations above 6 hours from the measurements. This means, that all
faster variations, below 6h, are contained within the residuals. Disturbances act on such
timescales independent of location and thus are supposed to be contained, in a first order,
within the residuals. Therefore the residuals together with the sigma-clipping may be
applied to other stations.

This implies that the introduced baseline derivation should be applicable to other
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mid-latitude observatories, in general. Extended analysis of the baseline for each of the
observatories certainly would be supportive.
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Chapter 7

Introduction to AI

The field of Artificial Intelligence (AI) is a rapidly advancing field that seeks to develop
intelligent machines capable of simulating human-like cognition and decision-making. It
involves the creation of algorithms and systems that can learn from data, recognize pat-
terns, and make predictions, enabling machines to perform tasks that traditionally re-
quired human interaction. AI has found applications across various industries, including
healthcare, finance, transportation, and entertainment, revolutionizing the way we live
and work. As research and development in AI continue to progress, its potential to
transform our world and address complex challenges is becoming increasingly evident.
In contrast to traditional algorithms that use pre-defined set of procedures by develop-
ers, AI algorithms use input data (experience) to derive procedures themselves (deriving
statistical decisions based on experience).

Figure 7.1: An overview of the time-line and development of AI, ML and DL. Taken from
nvidia.com.

As a discipline of AI, Machine Learning (ML) uses large quantities of input data that
are used to train algorithms. These algorithms learn on how to produce desired output by
themselves without further interaction of the developer. The fundamentals of ML were
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introduced by McCulloch and Pitts (1943) who, inspired by the human brain, introduced
the first mathematical models of neural networks. Since then the methods of ML have
been increasingly developed and made accessible to a ever growing userbase. Especially
during the past decade, ML techniques that leverage several layers of neural networks,
so-called deep neural networks, have demonstrated successful applications across a wide
array of domains and gave birth to the sub-domain of Deep Learning (DL). Very good
high-level introductions to ML and DL are given by Serrano (2021) and Trask (2019) and
the standard literature covering DL techniques in a more mathematical way is Goodfellow,
Bengio, and Courville (2016).

As such, ML and especially DL techniques have been considered in a wide range of
space weather problems (Camporeale, 2019). Successful AI applications include flare
forecasting, coronal hole detection and magnetospheric condition determination, as well
as solar wind speed determination from solar images (E. J. Brown, Svoboda, Meredith,
Lane, & Horne, 2022). Especially magnetic index forecasting with ML has shown promis-
ing results. Such models include solar wind data from satellites situated at L1 and are
trained to forecast responses of geomagnetic indices, as well as geomagnetic perturbations
on ground (Keesee et al., 2020; Coughlan et al., 2023). Other approaches take a further
complexity step and apply ML techniques to forecast geomagnetic perturbations from
solar disk images (Bernoux, Brunet, Buchlin, Janvier, & Sicard, 2022). The promising
AI results in the domain of space weather motivate this second part of the thesis which
is dedicated to leveraging artificial intelligence methods for the description and under-
standing of quiet variations. This introductory chapter gives a brief overview of artificial
intelligence, machine learning and deep learning, outlining the most important concepts
and techniques needed for its application. The models and results of these techniques are
presented in chapters 9 and 8 and discussed in chapter 10.

7.1 Machine Learning
As humans, we make decisions based on experience. Experience for a machine is data. As
such, machine learning describes the field of artificial intelligence for which the computer
is able to make decisions based on data without further interaction of the developer.

In order to solve a given problem, the computer uses data to build a model which
is basically a set of rules that represent the data. Models are build by training algo-
rithms which are procedures or sets of steps that solve certain problems and perform
computations on available input data. Trained models can then be used to make deci-
sions or predictions on new, not yet encountered input data. Features are any properties
or characteristics of the data that the model can leverage to make predictions. The de-
sired output data, which is referred to as the label, are the variables to be predicted.
Depending on the properties of the label, two types of supervised learning models are
distinguished:

1. Regression models that predict numerical data, such that the output can be any
number

2. Classification models which output are concrete states, categories or classes.

The branch of machine learning that uses labeled data is called supervised machine learn-
ing. In this case, the features which are of interest for the prediction (=labels) are
pre-determined and explicitly fed to the computer. Two other types of machine learning
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use unlabeled data: unsupervised machine learning, in which the computer finds patterns
on its own (like e.g. clustering or dimensional reduction), and reinforcement learning, in
which the computer learns from unlabeled data on its own while desired behaviours are
rewarded and negative ones are punished (which is successfully applied in e.g. video games
and management of resources). In this work we consider supervised machine learning.

Let us consider a basic problem (adapted from Serrano (2021)) to get acquainted
with the basic nomenclature of machine learning. Sometimes, an email friend from work,
Sandra, sends us spam emails, which we would like to avoid. Most of the time, however,
she sends us emails that are highly relevant, which we will relate to as ham1. The tracked
information of received emails is summarised in table 7.1 as labeled data. In this example

Table 7.1: Table summarising data from received emails which are classified as spam or
ham.

Day of the week Attachment size in KB Spam or Ham
Monday 1 Ham
Tuesday 2 Ham
Saturday 16 Spam
Sunday 20 Spam
Sunday 18 Spam

Wednesday 3 Ham
Friday 5 Ham

Saturday 25 Spam
Saturday 3 Ham
Tuesday 1 Ham
Thursday 3 Ham

the features are ’Day of the week’, ’Attachment size in kilobyte (KB)’ in column 1 and 2
and the label is ’Spam or Ham’ in column 3. As the label has two classes, namely ’Spam’
and ’Ham’, we are faced with a classification problem. From this data, we would like
to build a model that tells us if we should read the next email from Sandra or not. By
human-eye it is possible to scan this table and come up with rules according to the two
first columns and we can derive two models.

1. Model: According to ’Day of the week’, an email is generally spam when it is received
during week-ends

2. Model: According to ’Attachment size in KB’, an email is ham when it has an
attachment smaller than 15KB.

The question is how a computer is able to learn independently from this data. Let us
therefore consider the well-known linear regression algorithm. Reformulating the classi-
fication problem from before, the label could be e.g. the probability that an email from
Sandra is spam to render it a regression problem for which we would like to find a linear
equation that describes the probability. Also, linear regression has been applied several
times throughout this thesis, e.g. to determine the threshold for the long-term filters in
chapter 6.1.1.

The linear regression algorithm is a common and easy-to-understand method to de-
scribe data. Using this example, further mathematical concepts and operating principles

1Monty Python Flying Circus, 1970
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that are leveraged in machine learning algorithms can be introduced and easily made
accessible. In fact, a linear regression can be realised with ML techniques. However, in
practice ML methods are computationally too expensive compared with its simplicity.
The equation of linear regression writes as

y = wx + b (7.1)

with x being the features, w being the weight for feature x and b being an offset or bias.
The label is y which we would like to predict. For the one dimensional case in graphical
sense, w is the slope and b is the y-intercept. A change in the slope equals a rotation and
change of b equals a translation of the line.

Iteratively, the regression algorithm adjusts the weight and bias until an optimal solu-
tion is found. An iteration is referred to as an epoch during which the weight and bias are
adjusted by a small number called the learning rate η. Number of epochs and learning
rate are usually fixed before training a model. In figure 7.2, the outcome after each epoch
are visualised on a dataset including 6 two-dimensional data-points. The algorithm starts

Figure 7.2: The linear regression improvement with increasing iterations (epochs). From
left to right: the resulting line with randomly initialised weight and bias at the starting
point; the adapted lines during epochs 1 to 10; the adapted lines during epochs 1 to 50;
the adapted lines during epochs 51 to 10000. Taken from Serrano (2021)

with an initial guess for w and b as depicted in the left panel ’Starting point’. During
each epoch, the weight and bias are adjusted by the learning rate η to move closer to the
points. During the first 10 epochs in panel 2 a considerable change is observed, moving
the line consistently closer to fitting the points. During the following 40 epochs in the
third panel, the line is still adapted but in smaller steps. Finally in the fourth panel,
during epochs 51-10000, the line changes marginally and eventually is well fitted to the
points.

At the end of each epoch, the loss function is calculated to measure the results of
the algorithm. One of the most common loss functions are the Root Mean Square Error
(RMSE) which is defined as

RMSE =
√∑N

i=1 (ŷi − yi)2

N
(7.2)

with ŷi being the predicted label. The smaller the RMSE, the closer the model describes
the data, and thus finding the optimal RMSE is a minimisation problem. Gradient
Descent is one of the most commonly used methods for solving it. Gradient Descent
works by calculating the gradient (derivative) of the loss function with respect to each
parameter. The gradient points in the direction of the steepest increase of the loss function
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and by taking its negative steepest decrease of the loss function is obtained. The learning
rate η gives the amount of change and thus is a crucial for the convergence of the gradient
descent. If the learning rate is too large, the algorithm may overshoot the optimal solution
and fail to converge and if the learning rate is too small, the convergence may be very
slow. The algorithm may end after a preset number of epochs, but flexible ending criteria
may be used as well. Such criteria include thresholds for the absolute value or rate
of change of the loss function. Crucial parameters like the number of epochs or the
learning rate, that are part of the algorithm are referred to as hyperparameters. Their
choice can significantly influence model performance. Ideal values can be found with
hyperparameter-tuning techniques, like grid search or random search, during which models
are trained with different values of hyperparameters and their performance is compared.
In the case of the basic linear regression in equation (7.1), w and b are referred to as
trainable parameters. For polynomial regressions, such as the amplitude description
in figure 5.14, all the weights wi and the bias b are trainable parameters.

Common problems in machine learning are overfitting and underfitting. Figure 7.3
illustrates a set of data points that form a parabola and three polynomial models with
varying degrees. Model 1 has degree 1 and fits a line. This is a clear underfit of the
data, i.e. the model is too simple to describe the data’s general shape. Model 2 fits a
polynomial of degree 2 which describes the data well, while having some error (noise).
Model 3 on the other hand fits the observations perfectly by a polynomial of degree 10.
This is a clear example of overfitting. The model is not able to predict new observations
adequately as it is too complex. Ideally, any trained model generalises the available data
without describing too few (too simple) nor too many (too complex) details. In order to

Figure 7.3: Examples of polynomials with degree 1 (left), degree 2 (middle) and degree 10
(right) for fitting a set of points. Model 1 illustrates underfitting, while model 3 illustrates
overfitting. Taken from Serrano (2021)

overcome the problem of underfitting and overfitting, i.e. to choose the model that gives
the best generalisation, the available data is split into three, non-overlapping sets:

• The Training Set is used to train the model and learn patterns and relationships
within the data, like adapting the weights and bias of the polynomial regression.

• The Validation Set is generally used to understand if models under- or overfit and
to tune hyperparameters with the goal of finding ideal values of a model.

• The Testing Set is used to provide an unbiased final evaluation of a model.
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In general, when the model performs poorly on the training and validation sets, it is
underfit, while when it performs well on the training set but poorly on the validation set,
it is overfit. An adequate model will perform well on both the training and validation
sets. Depending on the size of the inital dataset, the ratio between training, validation
and testing sets may vary (Guyon, 1997). In practice, the rule of thumb is to split the
data into 60-20-20% or 80-10-10% for training, validation and testing set, respectively.
The Complexity Graph is an effective tool that can help choosing the right model
complexity to avoid over- and underfitting. It visualises the training error, which is
supposed to be a downward curve, and the validation error, which is a curve that shows
some downward trend before an upward trend. An example of the complexity graph
of a best-fit degree polynomial is depicted in figure 7.4. The number of degrees is on
the horizontal axis and the error on the vertical axis. For degrees smaller than 4, the
training and validation errors keep falling, and thus the model improves which indicates
underfitting. Above degree 4, even though the training error goes down, the validation
error increases, which indicates overfitting. In this special case the best model minimises
the training error according to the validation error at degree 4. For real applications,
these curves may get very complex and it depends upon the problem to find appropriate
trade-offs. Another possibility to avoid overfitting is Regularisation which introduces a

Figure 7.4: An example of a complexity graph that visualises the error for the training and
validation sets of polynomial models with degrees 0 to 10. The best model is indicated
by a black arrow. Taken from Serrano (2021)

measure of complexity for the model. Two typical measures based on the weights of the
model are the L1 norm, as the sum of the absolute weights of the model, and L2 norm, as
the sum of the squares of the weights. L1 tends to remove features (e.g. sets the weight
to 0) which may be beneficial when a lot of features are available, referred as to lasso
regression (Tibshirani, 1996). L2 tends to provide lower weights in general, which may be
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beneficial when few features are available or all features are of similar importance, referred
to as ridge regression (Tibshirani, 1996). Together with the loss function or regression
error, like the RMSE in equation (7.2), the regularisation term (L1 or L2 norms) can be
leveraged to find the least complex model with the best performance by minimising either

Lasso regression error = regression error + L1 norm (7.3)
Ridge regression error = regression error + L2 norm (7.4)

Figure 7.5 shows a polynomial models with and without regularisation. In the left panel,
no regularisation was applied, leading to an overfit. In the middle panel, the L1 reg-
ularisation was applied which favours the removal of features by setting the weights to
zero. This leads to an underfit of the model in this case, as all features are of equiva-
lent importance. In the right panel, the L2 regularisation was applied, adjusting weights
appropriately to find the correct degree. It is also possible to describe how important

Figure 7.5: Examples of models with and without regularisation including the root mean
square error (RMSE) on the testing set. The left panel shows the model without, the
middle with L1, and the right with L2 regularisation. Taken from Serrano (2021)

regularisation is by multiplying the regularisation term by the hyperparameter λ. For λ
= 0 no regularisation is applied and thus highly complex models may be favoured, while
a high λ favours simpler models. The regularisation parameter is commonly chosen as
powers of 10, like 10, 1, 0.1, 0.01. As a hyperparameter, ideal values for λ can also be
determined during hyperparameter-tuning.

Having familiarised ourselves with the terminology, let us now introduce one of the
most commonly known machine learning algorithms: Random Forests. These allow for an
intuitive approach of the basic concepts of machine learning and, apart for model deriva-
tion, are often used for feature selection purposes. This is followed by the introduction
of very successful deep learning techniques that leverage neural networks for the specific
case of sequential time-series data.

7.1.1 Random Forest
A Random Forest is a supervised machine learning method that can be used for both
classification and regression problems and was introduced by Breiman (2001). It is a
powerful algorithm that combines the predictions of multiple decision trees to improve
accuracy, reduce overfitting, and enhance generalisation on new data. A decision tree is a
tree-like structure where each internal node represents a feature, each branch represents
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a decision based on that feature, and each leaf node represents the predicted output or
class label. An example of a decision tree is depicted in figure 7.6. A decision tree is

Figure 7.6: An example of a decision tree based on two variables x0 and x1 into two
categories (e.g. squares and triangles) for a total of 12 samples. Each nodes indicates
the decision criteria, the entropy, the number of samples and their classification. The
two-dimensional visualisation of this split is illustrated in figure 7.7. Taken from Serrano
(2021)

based on yes-or-no questions (boundaries) and is represented by a binary tree with root
node (the start), decision node, leaf nodes (a node which has no branch emanating from
it), branches (edges that emanate from a decision node). The depth of a decision tree
is the length of the longest path from a root to a leaf, e.g. the decision tree in figure
7.6 has a depth of 2. The building of decision trees is done by determining the most
important features, i.e. the feature and associated boundary that split the data the best.
For regression problems, the root mean square error is commonly used. To evaluate the
performance of classification models, three commonly used measures are:

• Accuracy tells how often the model classified the data correctly. An accuracy of
100% indicates that all data are classified correctly.

Accuracy = correct classifications
total classifications (7.5)

• The Gini Impurity Index is a measure of how diverse a dataset is. It is defined
as

Gini = 1 − p2
1 − p2

2 − · · · − p2
n , (7.6)

with pi = ai

m
, whereby m is the amount of elements in the dataset, n is the number

of classes and ai is the number of elements belonging to the ith class. The lower
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the Gini index, the purer the dataset, i.e. the classes contained in a leaf-node are
similar, and thus the better the model.

• The Entropy, similar to the Gini index, is a measure of the diversity of a dataset
and is defined as

Entropy = p1 log2(p1) − p2 log2(p2) − · · · − pn log2(pn) , (7.7)

with pi being the same as in (7.6). The lower the entropy, the more similar the
elements of the dataset. The entropy criteria tends to give better results but comes
at a higher computational cost compared to the Gini index.

When building a decision tree, decision stumps (decision trees with depth 1) consisting
of one node and two leaves per feature are created. Each leave is evaluated by the three
measures and an index for each stump is calculated that is used to build the tree. Starting
from the root node, the data is split according to the best feature into two leafs. The
resulting samples of each leave are evaluated. If the samples are not ideally split, the leave
is turned into a decision node with two further leaves. This procedure is iterated until a
stopping condition is reached. Such conditions may be a minimum amount of change in
accuracy, the reaching of a threshold for Gini impurity index or entropy or the reaching of
the maximum depth of the tree. All of these are hyperparameters of a decision tree and
thus of the random forest. They are set before training and optimum values may be found
by hyperparameter tuning methods. For two features x0 and x1 and corresponding labels
’square’ and ’triangle’ a two dimensional plane can be used to visualisation, as depicted
in the left panel of figure 7.7. During the first iteration depicted in the middle panel, the

Figure 7.7: Two-dimensional illustration of domain splitting for the decision tree in figure
7.6. The left panel shows the distribution of the samples. The middle panel, after the
first split (depth 1 in the decision tree) and the right panel the final split (final split at
depth 2). Taken from Serrano (2021)

feature x0 is determined as best split, drawing the vertical line at x0 = 5. This creates a
decision tree with two leaves. Each of the leaves contain one wrong classification and thus
are turned into decision nodes. In the second iteration, depicted in the right panel, the
best split of the left node is found to be feature x1 with boundary x1 ≤ 8 and the right
node by x1 ≤ 2.5. Each datapoint is accurately classified and the decision tree is build.
The corresponding decision tree with depth 2, including decision criteria, entropy values,
number of samples in each node and the value describing the amount of data points for
label in each node is illustrated in figure 7.6.

A random forest algorithm is an ensemble method consisting of many decision trees.
It is categorised as a bagging method. Ensemble models, also called strong learners, are
a collection of models, or also referred to as weak learners, joined together to improve
predictions. Bagging includes the training of several models by using randomly drawn
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subsets of the input data (with replacement) which are the weak learners. The other
ensemble method is called boosting and starts by training a first random model (first
weak learner) and builds following models by improving poor predictions of the previous
ones by focusing on mislabeled data (succeeding weak learners).

Figure 7.8: An example of random forest as a bagging ensemble method. Through voting
of each weak learner (simple decisions trees), a strong learner is derived (random forest).
Taken from Serrano (2021)

For both methods, the final output of classification problems is generated by voting of
all weak learners, while in regression problems the final output is derived as the average
of the weak learners. An example of a random forest for a classification problem (ham
or spam email according to the features ’number of words lottery’ and ’number of words
sale’) is depicted in figure 7.8. Each weak learner 1, 2 and 3 is based on a subset of the
total input points and in general a simpler model. The final strong learner is then created
by counting the votes of each of the weak learners, i.e. by majority.

7.2 Deep Learning
Deep Learning (DL) is a discipline of ML that makes use of Artificial Neural Networks
(ANNs) that are based on cognitive functions of the human brain. ANNs have been suc-
cessfully applied in a wide variety of fields leading to promising results (Sarker, 2021). The
building blocks of an ANN, or for short Neural Network (NN), are perceptrons which
simulate neurons of the human brain (McCulloch & Pitts, 1943). Figure 7.9 illustrates the
functionality of a perceptron, indicating the neuron’s equivalent. The perceptron consists
of input variables xi (axons), weights wi (synapses) and a bias b, an activation function
f and an output ŷ (output axon). Per perceptron, there are i = 1, ..., n inputs and cor-
responding weights and one bias b. The mathematical description of the perceptron (cell
body) is given in equation (7.8) on the left of figure 7.9. The output of a perceptron
can act as input for other perceptrons. Neural networks are build by combining layers
of perceptrons, as depicted in figure 7.10. Features make up the input layer and labels
the output layer. In between, layers of perceptrons are referred to as hidden layers.
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ŷ = f

(∑
i

wixi + bi

)
(7.8)

Figure 7.9: Illustration of the functionality of a perceptron (neuron) with the equivalent
of a human brain cell. The perceptron receives input features (axons), weights (synapses)
and a bias over which it creates the sum. The output is the activation function applied
on the sum (within the cell body) and is written in equation (7.8). Taken from Serrano
(2021)

The depth of a neural network is the number of hidden layers plus 1 (the output layer).
The size of a layer depends upon the number of perceptrons contained in that layer. For
example, the depth of the NN in figure 7.10 has a depth of 4 and the first hidden layer
has a size of 6. The trainable parameters of a neural network are the weights and biases

Figure 7.10: An example of a fully connected, trained neural network of depth 4 with
three input features and two output labels. The first hidden layer has a size of 6, the
second and third layers a size of 5 (number of neurons). The colour of the edges indicates
the relative value of the corresponding weight for illustration purposes, with blue being
negative and red positive weights and the more saturated, the higher the weight. This
NN example was created with https://alexlenail.me/NN-SVG/.

of its neurons. The training of the neural network is referred to as back-propagation
(Rumelhart, Hinton, & Williams, 1986). The weights and biases are initialised and ac-
cording to a loss function optimised. As for other ML methods, the mean square error
is a common loss function for regression problems. At each epoch, the loss function and
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corresponding gradients (the derivatives with respect to each of the weights and biases)
are calculated. Then gradient descent is used to adapt the weights and biases according
to the pre-set learning rate η to improve the model output. For a detailed treatment of
back-propagation algorithm see also e.g. (Williams & Zipser, 1995). During the training
two important problems arise which need to be taken care of: overfitting and vanishing
gradients.

• Overfitting:
Large architectures of neural networks are powerful, but run into the risk of mem-
orizing the data instead of generalising it. One way of preventing overfits is to use
regularisation. Similar to the introduced regularisation in machine learning (see
figure 7.5), overfitting can be reduced by punishing higher weights. As in equations
(7.3) and (7.4), a regularisation term is added to the loss function.
Another way is to use Dropout. During the training, neurons run into the risk of
learning patterns from statistical noise. Other neurons in the same network may
then learn how to counterbalance such mistakes. This co-adaptation results in poor
generalisation of the data. Dropout addresses this issue by preventing neurons from
correcting mistakes of others by randomly removing some during the training. At
each epoch, every neuron is dropped by a small probability, the drop-out rate p,
and the network is trained only on the remaining ones.

• Vanishing Gradient:
Backpropagation is based on the calculation of gradients and adapting weights ac-
cordingly. The gradients are calculated according to the chain rule of partial deriva-
tives which leads to the multiplication of gradients from all the activation functions
(see Williams and Zipser (1995) for further mathematical details). If these gradi-
ents are then very small, their product tends to vanish, which in turn does not lead
to weight updates and eventually does not allow the network to learn. The choice
of the activation function plays a crucial part in dealing with vanishing gradients.
Typical activation functions include the sigmoid function σ, the hyperbolic tangent
tanh and the rectified linear unit (ReLU) defined as

σ(x) = 1
1 + e−x

(7.9)

tanh(x) = ex − e−x

ex + e−x
(7.10)

ReLU(x) = max(0, x) (7.11)

and plotted in figure 7.11. As tanh is steeper and thus its derivative is also steeper, it
is better suited than the sigmoid function for solving the vanishing gradient problem.
The popular ReLU function has the desirable property of being always, having no
upper threshold and thus is often used.

As for ML algorithms, neural networks come with a set of hyperparameters that have
direct impact on the model performance. Here too, hyperparameter tuning can help
finding optimised values. Some of the most important hyperparameters include:

• Learning rate η
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Figure 7.11: Examples of standard activation functions for perceptrons. Form left to right:
the sigmoid σ from equation 7.9, hyperbolic tangent tanh from 7.10 and the rectified linear
unit. Taken from Serrano (2021)

• Number of epochs
• The amount of input data that enters the training process at a given time (subsets

of input data) which is referred to as batch or mini-batch
• Architecture of the network: number of layers, number of neurons per layer, as well

as activation functions
• Regularisation parameters, L1, L2, or regularisation term λ
• Dropout-rate p

The architecture in figure 7.10 is referred to as a fully connected, feed-forward neural
network or Multilayer Perceptron (MLP) network. Feed-forward relates to the fact that
past input has no influence on the current prediction. Further architectures of neural
networks are available that are specifically adapted for different classes of problems. For
example a Convolutional Neural Network (CNN) is a class of deep neural networks that
are extensively used in computer vision tasks such as image recognition, object detection
and segmentation. The neural network introduced in the following section is specialised
for time-series data.

In the following a neural network class is introduced that specialises on time-series.

7.2.1 Long-Short Term Memory (LSTM)
Recurrent Neural Networks (RNN) are neural networks that are specialised on problems
that use data-series in which the sequence and order of the data is important, such
as language processing and time-series. They come with an integrated memory, that
uses information from prior inputs to influence current input and output. Such memory
loops allow information to persist and to be passed on to the next time-step. So-called
hidden states C act as memory within the network that contain relevant information
from previous time-steps. On the top left of figure 7.12, a neural network A receives
the input xt and produces the output ht at step t. The loop guarantees the passing of
information from one step to the next. This visualisation is referred to as rolled. Un-
rolling the RNN, as is done on the top right of figure 7.12, reveals that the loop can be
viewed as a temporal copies of the same network A per step t = 0, 1, 2, ..., t. At each
time-step, the cell-state C of previous steps is used to generate the current output.

In practice, the vanishing gradient problem causes major issues during the training of
RNNs, especially when trying to capture long-term dependencies in sequences. The gra-
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dient descent algorithm becomes easily unstable and does not converge anymore (Bengio,
Simard, & Frasconi, 1994). A special case of neural networks are Long-Short Term Mem-
ory (LSTM) networks introduced by Hochreiter and Schmidhuber (1997). These overcome
the problem by adapting the repeating module of the RNN. While the RNN has a simple
layer that takes into account previous steps, the LSTM memory cell itself is made up
of neurons that allow to selectively keep relevant information. This operating principle
is realised by gates that decide upon which information enters the cell state and output
and which does not. An LSTM cell consists of three gates: the forget, input and output
gate. Each of these use the sigmoid activation function. The schematics of the LSTM
cell is depicted on the bottom of figure 7.12. The functionality of the LSTM cell is based
on the cell state Ct which is controlled by gates for limiting the amount of past infor-
mation. Figures 7.13 to 7.16 illustrate the workflow of the LSTM cell and its gates with
corresponding equations and description in the caption.

Figure 7.12: The top illustrates the schematics of the LSTM architecture in rolled (left)
and unrolled version. The time dependence in the rolled version is indicated as a loop.
In the unrolled version, the network is illustrated at several timesteps (indicated in the
subscript). The lower figure depicts the details of the repeating cell A at timestep t
including input and outputs for preceeding and succeeding time-steps. Taken from Colah
(2015).

Based on the initial approach, further versions of LSTM exist. Some of these include
the LSTM version introduced by Gers and Schmidhuber (2000) that adds a peephole
connection such that the gate layers have access to the cell state, or Gated Recurrent
Unit (GRU) as introduced by (Cho et al., 2014) that combines forget and input gates
into one single update gate. The LSTM from Hochreiter and Schmidhuber (1997) is
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Figure 7.13: Forget gate. The first step of the LSTM cell is to decide which information
is irrelevant and may be forgotten by the network, i.e. information removed from the cell
state. Therefore, the output of the previous step ht−1 and the input of the current step
xt are multiplied by the weight wf and a bias bf is added. This is then passed through
the sigmoid function and makes up the forget gate’s output ft. Taken from Colah (2015).

Figure 7.14: Input gate. Next, the input gate decides on which information to store in
the cell state. The sigmoid layer chooses the values to update it and the tanh layer creates
candidate values C̃t that may be added to the cell state. Taken from Colah (2015).

Figure 7.15: Cell state. With the forget and input gates, the new cell state Ct is derived
by multiplying the output of the forget layer ft with the old cell state Ct−1 and adding
the output of the input gate it ∗ C̃t. The final cell state Ct at timestep t is written on the
right. Please not that this equations contains the three weights Wf , Wi, WC , as well as
the biases bf , bi, bC . Taken from Colah (2015).

Figure 7.16: Output gate. The output of the LSTM is based on the current cell state
Ct and the output of the previous step passed through the sigmoid layer ot. The cell state
is run through a tanh function to give values between -1 and 1 and multiplied by ot. The
equations for the final output ht are written on the right. Taken from Colah (2015).



148 CHAPTER 7. INTRODUCTION TO AI

considered shallow as it only contains one hidden layer. A stacked or deep LSTM network
is made up several layers stacked together. The deep design allows for a higher degree of
complexity by enabling nonlinear mapping between inputs and outputs for hierarchical
learning (Hermans, in neural Information, & 2013, 2013; Pascanu, Gulcehre, Cho, &
Bengio, 2014; Yu, Qu, Gao, & Tian, 2019). Deep LSTM models have demonstrated
increased performance in various applications (Guan & Plötz, 2017; Althelaya, El-Alfy,
& Mohammed, 2018; Ghimire et al., 2022). An example of a deep LSTM is illustrated in
figure 7.17. The left shows a 3 layer unrolled RNN which indicates the influence of the
layers at the previous time-steps to the current time-step. This relationship is indicated
as feedback loops on the right in rolled visualisation. The choice of RNN architecture

Figure 7.17: Schematics of a deep LSTM example with three hidden layers. The left figure
depicts the unrolled network with indicated influence of past layers on the current layer.
The right figure depicts the rolled version of the deep LSTM with indicated feedback loop.
Adapted from Hermans et al. (2013)

depends heavily on the problem to be solved. Several studies are dedicated to find the
best architectures for different problems, see e.g. Jozefowicz, Zaremba, and Sutskever
(2015).



Chapter 8

Feature Importance with Random For-
est

Before we attempt to model diurnal variations, we will evaluate which input parameters
are best to use. The ML concept of feature (or variable) importance provides information
on the capability of individual features to influence model predictions. It answers the
question of which features are the most influential ones in making predictions and decisions
in the model.

A common criticism and highly debated topic of machine learning techniques is their
black box approach as they do not directly provide information about which input features
and to what extent they influence model results (Rudin, 2019). In fact, interpretabiliy
and explainability of machine learning is a highly debated topic that receives increasing
attention as these techniques are used for scientific insights and discoveries (Roscher,
Bohn, Duarte, & Garcke, 2020; Burkart & Huber, 2021; Marcinkevičs & Vogt, 2023).
Feature importance provides means to identify most important variables that are highly
related to the output variables for interpretation purposes.

In chapter 7.1.1, we introduced the concept of decision trees and the ensemble method
random forest. Random forests have been shown to be very efficient in determining
feature importance (Genuer, Poggi, & Tuleau-Malot, 2010). When training a random
forest model, an ensemble of decision trees are generated. At every node of each of
these trees, the dataset is split according to the feature that leads to the lowest gini
impurity index. The better a split, the lower this index. For each feature, the decrease in
impurity is recorded and the average over all trees gives the feature importance. Features
that frequently appear within the higher nodes of the decision trees tend to have higher
importances. In general, feature importance is presented in relative values (in %) over all
input features, such that the total equals 100%. One of the advantages of this method
is its low computation cost as all the relevant information is already computed during
model training.

In the following, we will investigate the feature importance for the two labels xD and
yD, the combined (sub-)diurnal filters as defined in table 4.1 and equations (5.1) and (5.2).
In accordance with the rest of this thesis, we will employ measurements and properties of
the magnetic observatory Chambon-la-Foret.

8.1 Input Parameters and Training Sets
Explained in chapter 2.3.2 and as we have also seen in chapter 5.2.2, the solar quiet
variations show strong dependencies on the local time LT , the solar longitude L and solar
activity F10.7. Additionally, in figures 5.3 and 5.4, the activity of xD and yD suggest
dependencies on the local time of sunrise LTR and sunset LTS. The solar zenith angle

149
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χ being connected to solar illumination is another parameter that may influence diurnal
variations. Furthermore, as described in chapter 5.3, the filter responses include variations
induced by changing solar wind conditions, including solar storms (see also chapters 2.1.2,
2.4 and 2.5.3). Therefore we expect dependencies on solar wind parameters like the IMF
orientation Bx, By and Bz, the velocity v, the density n and the temperature T . The
solar wind data is taken from the OMNI web interface1 which includes satellite data from
ACE, Wind and DSCOVR at the L1 position (Papitashvili & King, 2020). This leads to
a set of 12 input parameters, i.e.:

1) LT 7) Bx

2) χ 8) By

3) L 9) Bz

4) LTR 10) v
5) LTS 11) n
6) F10.7 12) T

When evaluating feature importance with random forest, some limitations need to be
kept in mind (Genuer et al., 2010; Gregorutti, Michel, & Saint-Pierre, 2017). This method
is known to give equal or similar importance to correlated features, but will give overall
reduced importance when compared to the same tree without correlated counterparts.
Another issue can occur that only one of the correlated features is selected, while the
other ones are neglected. Therefore, let us have a look at the correlation between the
12 identified features. Figure 8.1 shows a heatmap of the pearson coefficients for each of
the input features. Unsurprisingly, there is a high (anti-)correlation between L and LTR

(0.8) and L and LTS (-0.73), as well as LTR and LTS (-0.98). Another high correlation is
found for v and T of 0.68. Further, notable low to moderate correlations include L and χ
(0.34), v and n (-0.36), as well as Bx and By (-0.41). To avoid known issues with random
forest feature importance, we will only keep one feature of each of the correlation pairs
with a pearson coefficient higher than 0.5. This leads to a set of 9 input parameters, as
summarised in table 8.1.

Table 8.1: Input Parameters for the Random Forest models for the determination of the
feature importance.

LT F10.7 Bx

χ v By

L n Bz

We define three different datasets for which we want to derive feature importance for
xD and yD. The first once covers the entire period between 2001 and 2010 which includes
a very strong solar maximum and a very weak solar minimum. As we do not exclude
dependency changes on parameters during different phases of the solar cycle, we define
two further training sets: One during solar maximum between 2001 and 2002, and one
during solar minimum between 2008 to 2009. To reduce computational costs we use a
time-resolution of 1 hour for all features and labels. Additionally we normalise all values
between 0 and 1 as we apply the random forest on a regression problem. This avoids the
problem of features with high absolute values being favoured over those with low values
in regression models.

1omniweb.gfsc.nasa.gov

https://omniweb.gsfc.nasa.gov
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Figure 8.1: Colour-coded correlation matrix for the 12 input features of the random forest
models. Blue values correspond to negative and red values to positive correlation. The
higher the opacity the higher the absolute correlation.

8.2 Random Forest Models
The random forest model is built with the scikit-learn framework in python (Pedregosa
et al., 2011), leveraging its default implementation with 100 decision trees and using
the mean squared error as loss-function. We do not implement any customised stopping
function, such that the building of each tree is finished only once the leave has a sample
size of 1. This guarantees that the random forest model is able to describe the data-set
well. As we do not use this model to make accurate predictions of future data, but to see
which features influence the given dataset, we want a high score for the training set. The
performance on the test set is not of significant importance in this case.

We generate a total of 6 models which share the same 9 input features but differ
by the considered time-interval (data-sets for entire period, solar minimum and solar
maximum) and output label (xD or yD). The resulting six models and their details are
summarised in table 8.2, showing the output label per model and the training set with the
corresponding time-interval. The training duration is defined as the amount of time the
computer needed to train/build the random forest. For regression models the R2 score
represents the proportion of the dependent variable’s variance that is explained by the
independent variables, i.e. it gives information about how well the trained model is able
to represent the training data. It is defined as

R2 Score = 1 − sum of squares of the residual errors
total sum of the errors . (8.1)

For our models it indicates how well the input features were able to describe the variations
within xD and yD.
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Table 8.2: Overview of the six random forest models, detailing the output label, the
specific training set and corresponding time-interval in years, as well as the time needed
for the training of the model (training duration) and the R2 score on the training set.

# Output Label Training Set Time-Interval Training Duration R2 Score
1 xD entire period 2001-2009 49.6 s 0.9405
2 xD solar maximum 2001-2002 9.2 s 0.9422
3 xD solar minimum 2008-2009 8.19s 0.9481
4 yD entire period 2001-2019 44.3 s 0.9769
5 yD solar maximum 2001-2002 8.57 s 0.9815
6 yD solar minimum 2008-2009 7.92 s 0.9819

8.3 Results
As a first observation in the column ’Training Duration’ in table 8.2, we recognise that
the time needed to train the random forest models is well below one minute, making
this algorithm very efficient. The R2 score in the last column is comparable across each
training set per component xD and yD. The score of around 0.98 is high for yD, suggesting
that its variance is well captured within the model. For xD the score of around 0.94 is less
but it still ensures that the main part of the variance is encapsulated within the model.

A word of caution needs to be kept in mind here. The R2 scores indicate very good
performances and may give the impression that the corresponding models are well suited
to describe diurnal variations. However, the R2 score can be interpreted as how much
better the model performs with respect to a model that is a simple straight line. Therefore,
while these scores may be used to compare the ability of models on how well they describe
the used training set, it is not advisable to use them as sole quality marker and/or decision
criteria.

From the six models, we extract the feature importance as depicted in figure 8.2 for
xD on the left and yD on the right. The feature importance is given in % relative to all
19 parameters. The results for solar minimum are coloured in blue, for solar maximum
in red and for the entire period from 2001 to 2010 in yellow.

Several interesting observations can be derived. Starting with xD, the solar zenith
angle χ seems to be the most important feature with around 25% for all three time-periods,
followed by the local time LT and solar longitude L, except during solar minimum when
L has a higher importance than LT . The components of the IMF Bx, By and Bz have
a higher relevance during solar maximum and during the entire period than during solar
minimum, whereby Bz has the highest relative feature importance of the three. The solar
wind velocity v has a higher importance during solar minimum and the entire period than
during solar minimum. The solar wind density n, F10.7 and Bx are assigned the lowest
importance in general.

Turning to yD, we see that the most important feature during solar maximum and
the entire period is the local time LT with over 55%, followed by the solar zenith angle
χ with less than 20%. During solar minimum, χ is slightly more important than LT .
Intriguingly, all the other input features are of much lower importance, with less than
10%, including the solar longitude L describing the season.

While for xD the solar zenith angle is of higher importance, for yD the local time LT is
more important, at least during solar maximum and when considering the entire period.
Note that the vertical axes have different ranges, suggesting that xD is influenced by a
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Figure 8.2: Relative feature importance in % as derived from the random forest models
summarised in table 8.2. The results for each parameter and corresponding period (solar
cycle minimum, solar cycle maximum and the total period) is illustrated for xD on the
left and yD on the right.

higher number of features than yD.
Let us name some discrepancies of the results in figure 8.2 and the previous work

in this thesis. We know that the solar quiet variations depend strongly on direct solar
illumination during the day, which has an approximate cycle of 24 hours, explaining the
local time importance. The solar zenith angle is closely related to the local time LT and
shows a linear correlation of 0.34. This may explain its elevated importance in the random
forest feature importance method, even though it did not hold significant results when
used in conventional modeling (see chapter 5.2.2.4). From the L + LT model in chapter
5.2.2.1 and the amplitude dependencies found in figures 5.17 and 5.18, we know that both,
xD and yD have clear dependencies on the solar longitude L. Although, this relationship
is somewhat caught for xD, it is almost non-existent for yD. A similar reasoning can
be used for the F10.7 index. The derived feature importance results also suggest that
solar wind conditions impact mainly, and almost solely, the variations in xD, but leave yD

fairly unaffected. It needs to be stated that random forests also tend to give preference to
features with higher cardinality. This may add to the underestimation of the importance
of the F10.7 index, as it comes in a one hour cadence. An important limitation for
our application is also that random forests are not well-suited for sequential, time-series
problems and do not capture any time dependencies.
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Chapter 9

Diurnal Variations with LSTM

Chapter 5.2.2 was devoted to the description of quiet variations of the geomagnetic field
and to which extent certain parameters influence them. This led to three analytical
models, which are based on the local time LT , the solar longitude L, the solar activity
index F10.7 and the signal itself. Their performance is discussed in section 5.2.2.5. In this
chapter, our focus lies in exploring AI methods for the description of diurnal variations
of the geomagnetic field, namely the combined (sub-)diurnal filters xD and yD as defined
in equations (5.1) and (5.2). In accordance with the rest of this thesis, we will employ
measurements and properties of the magnetic observatory Chambon-la-Foret. Due to the
sequential nature of geomagnetic field measurements and the resulting filter responses,
we will employ Long Short-Term Memory (LSTM) models, which are explicitly designed
for handling such sequential data. In studies of ground perturbations and magnetic index
forecasting, LSTM models have been widely explored and successfully applied, showing
higher performances than feed-forward ANNs, see e.g. Tan, Hu, Wang, and Zhong (2018);
Keesee et al. (2020); Siciliano et al. (2021); Collado-Villaverde, Muñoz, and Cid (2021);
Pinto et al. (2022).

As for any modeling task, the first step is data preparation. For DL methods, this
includes the splitting of data into training, validation and test sets. We then describe the
architecture of a deep LSTM network. We will use it to derive two models that are build
upon the same architecture but differ in their input features. One model, model 1, focuses
on the quiet variations by taking into account a set of features derived from the feature
importance and the physics-informed models. The other model, model 2, additionally
takes into account solar wind parameters to include ground perturbations. These models
are then trained and their training performance is analysed. Finally, the results of model
1 and model 2 are presented, compared and discussed.

9.1 Data Preparation
The first step when deploying any ML technique is data preparation which includes defin-
ing output labels (what do we predict) and input features (which parameters influence
the prediction), as well as the splitting of the dataset (what periods do we consider for
the training, validation and testing).

As mentioned, we are interested in the diurnal variations xD and yD of CLF which
make up the two labels per model.

We consider two sets of input features: one for quiet variations and one for diurnal
variations, leading to two models with the same architecture but with different input
features. The input features to describe the quiet variations for model 1 are LT , χ, L
and F10.7. The input features for the diurnal variations of model 2 are LT , χ, L, F10.7
plus the solar wind parameters Bx, By, Bz, v and n. The motivation for the choice of
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these input parameters and the adapted architectures are given below in chapter 9.3.1
and 9.3.2.

The larger the initial dataset, the more expensive the training becomes in terms of
computational costs. This is especially true for neural networks. To keep computational
resources economical, while ensuring an adequate mapping of diurnal variations, we use
a time-resolution of one hour for all input and output variables and limit the full dataset
to nine years from 2001 to 2009. To ensure sequential data, we will use all days within
this period. This implies that the model will be trained on quiet days, as well as on
disturbance-influenced periods.

Figure 9.1: Visualisation of the dataset-splits for solar maximum and minimum into
training (blue), validation (yellow) and test (green) sets. The data is split according to
the 80-10-10 rule.

With guidance of the 80-10-10 rule, we split the data into 7 years of training set (2001-
2007) and one year of validation (2008) and test (2009) sets. The split is illustrated in
figure 9.1. As has been done for the random forest algorithm, we normalise all values
between 0 and 1.

9.2 Model Architecture
We use the original cell architecture of LSTMs as introduced by Hochreiter and Schmid-
huber (1997) deployed in a deep LSTM network to reach a higher order of complexity
compared to its shallow version. In our model, the first LSTM layer is made out of 100
neurons (or cells) that receives the input features, followed by 4 hidden LSTM layers with
each 50 neurons. Each of these layers use the ReLU activation function. The output layer
is a dense layer with the size of the to-be predicted labels. A dropout of 20% in between
the last hidden layer and the output layer is added to prevent overfitting. An important
hyperparameter of LSTMs is the look-back variable which sets the maximum amount of
time for which past values can influence the current output. We use a look-back variable
of 48 hours, allowing the LSTM to use information from two days ago for its predictions.
As the prediction of diurnal variations is a regression problem, we use the mean square
error (MSE) as loss-function and the mean absolute error (MAE) as the metric. The
training runs for 20 epochs. We use a learning rate of η = 0.001.

The development and training of the models is done using the TensorFlow-Keras
framework for Python (Abadi et al., 2016) and the scikit-learn toolkit (Pedregosa et
al., 2011). These frameworks include a collection of state-of-the-art machine and deep
learning methods, that allow, among others, to use high-level language for creating neural
networks and implement efficient optimisation algorithms for the training. Figure 9.2
shows the architecture as build with Tensorflow-Keras.

One more property of machine learning methods that is important in practice should
be noted at this point. The training of neural networks (or any other ML algorithm) is
a stochastic process. This implies that no two trained models will be identical nor will
their results be exactly the same. In order to receive reproducible results and be able
to compare models with varying (hyper-)parameters, it is important to use a so-called
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Figure 9.2: The deep LSTM model architecture as build and summarised by the
Tensorflow-Keras framework. The final dense layer has output shape 2.

random-seed. This random-seed describes the initialisation of the start conditions and
guarantees reproducible results.

9.3 Two LSTM Models
Based on the prepared data-set and defined architecture, we derive two regression models.
The first model, similar to the analytical models derived in chapter 5.2.2, predicts the
quiet variations of the combined (sub-)diurnal variations based on the four parameters
LT , L, χ and F10.7. With the second model, we explore the architecture to reproduce
the full combined (sub-)diurnal variations including disturbance signatures by taking into
account additionally the solar wind parameters Bx, By, Bz, v and n. In both cases, the
same data-set covering the period from 2001 to 2009 is used, as described in section 9.1.
Each of these models predict both labels, xD and yD simultaneously.

9.3.1 Model 1: Describing Quiet Variations with LT , L, F10.7
and χ

In chapter 5.2.2, we deduced physical models using the parameters local time LT , solar
longitude L and solar activity index F10.7. From the data-driven feature importance in
figure 8.2, we found that the solar zenith angle χ has a high importance for both, xD

and yD. Combining the physical with the data-informed approach, we use these four
parameters as input features for the first LSTM model. The corresponding architecture
is depicted in figure 9.3 and we refer to it as model 1.

Assuming no external influences, except the solar cycle phase, the four parameters
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Figure 9.3: LSTM architecture of model 1. Its input features are the local time LT , solar
zenith angle χ, solar longitude L and solar activity index F10.7. The LSTM network
consists of five hidden layers. The temporal feedback loop and drop-outs are not indicated.

Figure 9.4: The training progression for the quiet variation model. The model error is
illustrated on the left and the model loss on the right for both, the training (blue) and
validation sets (orange) per epoch.

hold relevant drivers that are associated for variations of the solar quiet current systems
(see also chapter 2.3.2). The training set for the LSTM model covers the full period
from 2001 to 2007 which includes a strong solar maximum and the start of a weak solar
minimum. This implies that a considerable amount of disturbed periods are included
which the LSTM will train on. However, the only indicator for disturbed periods is the
F10.7 index, which - even though being connected to solar storms - does not give further
information, like duration or intensities of storms. Therefore, the disturbed periods within
the training set may be viewed as noise.
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The training of model 1 took 1 hour and 37 minutes. In figure 9.4 the progression
of the model error (MAE) and model loss (MSE) for the training (blue) and validation
(orange) sets during the 20 epochs are visualised. For the error and loss of the training
set, we see a steep improvement during epoch 1 and 2, after which it stagnates. The
validation curves, on the other hand, improve marginally during the first epochs and then
fluctuate slightly. From the training error we deduce that after epoch 2 the neural network
does not learn new patterns anymore and does not improve anymore.

There is a pool of possibilities that may explain this training behaviour, which may
include:

• During gradient descent, the solution ends up in a local minimum (or a saddle
point) and is no longer able to improve. This is a common issue faced with neural
networks. The hyperparameter controlling the stepsize, the learning rate η, plays
an important role. If it is too high, the optimal solution may be overshot, while if
it is too small, the model may converge very slowly.

• Another possibility is underfitting: the model is too simple to learn the complex
dependencies between the input features and output labels. In this case the model
is not able to generalise on the training data.

• In order for models to learn effectively and finally to converge, the input data needs
to be correctly preprocessed. Input data that includes high numbers of outliers or
high levels of noise may significantly slow down and impede convergence.

9.3.2 Model 2: Describing Diurnal Variations including Solar
Wind Parameters

We know that the entire training period between 2001 and 2007 includes disturbance
events that may be viewed as noise in model 1. These events are closely related to solar
wind conditions, as they influence geomagnetic field variations, and thus the combined
(sub-)diurnal filters xD and yD. Model 2 takes into account the solar wind parameters
Bx, By, Bz, n and v in addition to the four features of model 1. The corresponding archi-
tecture is depicted in figure 9.5. In this case, the model is fed by parameters that influence
geomagnetic disturbances and thus is aware of them.

The training of model 2 took 1 hour and 42 minutes. In figure 9.6 the progression
of the model error (MAE) and model loss (MSE) for the training (blue) and validation
(orange) sets during the 20 epochs are visualised. The curves of the training and validation
errors have a falling trend for the first six to to seven epochs. During epoch 3, an increase
of both occurs. While the validation error continuously decreases, the training error
spikes at epoch 14. After that both start a slightly more pronounced decline. Analogue
observations can be made for the model loss. Both, training and validation loss, spike at
epoch 3, while the training loss spikes again at epoch 14.

Between epochs seven and twelve, the neural network does not learn very fast, however
after epoch 13 it seems to pick up learning speed again. This may indicate that the model
was able to get out of a local minimum (or a saddle point) and afterwards the model may
converge. This would imply to increase the number of epochs for model 2. Spikes like the
ones observed at epoch 13 may also imply that the data is very hard to generalise and
further investigations on the dataset should be considered.
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Figure 9.5: LSTM architecture of the quiet variation models with the input features local
time LT , solar zenith angle χ, solar longitude L and the solar activity index F10.7. The
LSTM network consists of five hidden layers. The temporal feedback loop and drop-out
are not indicated.

Figure 9.6: The training progression for the sw variation model. The model error is
illustrated on the left and the model loss on the right for both, the training (blue) and
validation sets (orange) per epoch.

9.4 Results
The final step in using the LSTM models is to apply them to the test set. The details of the
models and their training, followed by their performance on the test set are summarised
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in table 9.1. Both took a comparable time of around 1.75 hours to train during 20 epochs
on the training set. The time needed to apply them to the test set of one year (to make
predictions) is in the order of seconds and thus much faster than the amount of time
needed for training. The mean absolute error for the test set of model 1 is slightly better
than that of model 2, which holds for the mean square error too. According to these two
metrics, model 1 performs better than model 2 in predicting the two output labels.

Table 9.1: Details of the LSTM models including time needed for training and testing
(prediction), the mean absolute error and the mean square error per label for the test set.

# LSTM model input features Training Test MAE Test MSE
Duration per label

1 quiet LT, χ, L, F10.7 1h 37min 0.0147 3.5979 × 10−4

3.8546 × 10−4

2 solar wind LT, χ, L, F10.7 1h 42min 0.0174 5.3525 × 10−4

Bx, By, Bz 4.6827 × 10−4

v, n

To gain a more qualitative understanding of the model predictions, let us consider a
concrete test period in the first two weeks of May. In the upper six panels of figure 9.7
the corresponding solar wind parameters and F10.7 are indicated. We see a clear increase
of solar wind speed v around and after May 8th, while the other solar wind parameters
are rather low, describing quiet conditions. The F10.7 index slightly increases after the
8th of May.

The model outputs are depicted in the two bottom panels in figure 9.7. The combined
(sub-)diurnal filters xD and yD are shown in grey, model 1 taking into account the quiet
variations is in blue and model 2 taking into account the solar wind parameters is in
yellow. The first two weeks of May 2009 included mainly CK days with 4 non-CK days
on the 7th, 8th, 9th and 14th of May.

In xD on the upper panel, we see some stronger spikes between May 8th and 10th. It
is striking that both models significantly deviate from the actual variations and do not
describe xD very well. In the beginning of May, the models partially catch the timing of
the rising and falling edges in xD to a certain extent. Although model 2 includes solar
wind data, it does not show strong differences to model 1, merely the amplitude is slightly
increased. In yD (grey) in the lower panel, wee see that some variations occur around the
8th of May, which are not reproduced by any of the two models. Otherwise, both models
describe the variations in yD well. Model 1 and model 2 show high similarities for yD.

The presented period, and in general the test set, covers the year 2009 which is known
to be a very quiet year considering solar activity. Additionally, during the presented time
interval, the solar wind conditions are mainly very quiet and do not change very much.
This may be one reason for the similarity of the two model predictions.

The very bad performance of the models to predict variations in xD, both in shape and
amplitude, is partly related to the general volatility of the X component which already
posed a significant challenge for the analytical models. Additionally, due to the definition
of the split of the dataset, the trained models do not include any information on minimum
solar cycle phase. However, this does not seem to impact the prediction of yD too much
for the presented time-interval.
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Figure 9.7: Solar wind parameters and model results from 1st to 15th of May 2009. From
top to bottom: F10.7, Bx, By, Bz, v, n, xD and yD (in black). Model 1 is depicted in blue
and model 2 in yellow. Non-CK days are from 7th to 9th of May and on the 14th of May.



Chapter 10

Discussion

This chapter gave a first introduction into AI methods and showed their application to
problems addressed in this thesis. We introduced a popular machine learning algorithm,
random forest, and a popular deep learning technique, LSTM. We applied the random
forest method for feature importance and the LSTM for the description of the variations
of the combined (sub-)diurnal filters xD and yD.

We deployed the random forest algorithm to find the variables that drive the majority
of the variations among the input features: LT, χ, L, F10.7, Bx, By, Bz, v and n. We
trained a total of six models, one per filter xD, yD and each with three different training
periods: one during solar minimum, one during solar maximum and one covering almost
a whole solar cycle. The resulting feature importance, though agreeing overall, showed
several conflicting aspects in comparison with other physical data and interpretation.
Reasons include known issues with inter-dependent input features when using random
forest and the fact that this method does not consider the sequential nature of time
series data. Though the initial results are controversial, they form first experiences for
the identification of further drivers of diurnal variations of the geomagnetic field. Future
work should deploy other, more suitable methods to determine feature importance. These
include techniques to extract feature importance from RNNs and LSTMs, as is done in
e.g. Olden, Joy, and Death (2004); Freeborough and van Zyl (2022); Stevens, De Smedt,
and Peeperkorn (2022).

To predict the variations in xD and yD we trained two LSTM models. Model 1 that
takes into account only four input features that do not hold significant storm informa-
tion (LT, χ, L, F10.7) and model 2 that uses additional solar wind data as input features
(Bx, By, Bz, n, T ). For yD these models showed good results for the considered test pe-
riod in figure 9.7, while the models were not able to reproduce variations in xD. When
attempting to describe general diurnal variations by using solar wind data in model 2,
no major improvements for xD nor yD are found (c.f. Coughlan et al. (2023)). In fact
both models produce very similar variations. Model 2 learns very fast until epoch 6 and
at the end of epoch 20 the model still keeps on learning (see figure 9.6). This implies
that further improvements are ongoing and further training should be done. However,
ending the training of model 2 at epoch 20 may imply that it was only able to pick up
similar patterns as model 1. One reason for this may be that the main drivers are indeed
to be found in the input parameters of model 1. Another possibility may be that the
architecture of both LSTMs are too simple for the complexity of the problem and thus
both struggle to generalize the data in a similar manner. Both models predict xD and yD

simultaneously and their final mean absolute error indicates that the models work well.
Still, both models perform poorly in describing the variations in xD. On one hand this
means that the final mean absolute error is not a good metric to describe model perfor-
mance and on the other hand it implies that future modeling efforts should consider the
prediction of each component separately as xD is so much more complex than yD.
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The initial idea for the LSTM models is to use them for the baseline determination.
In section 6.3, the analytical shift model x̃B,shift, ỹB,shift and the diurnal variations from
previous days x̃B, ỹB was used to replace the filter baseline during identified disturbance
intervals, see equations (6.7) to (6.10). We can follow the same strategy and derive a
baseline based on the preliminary results of the LSTM models. The two LSTM models
produce very similar curves, however as the baseline should ideally contain quiet varia-
tions, we use model 1 as it is not learning from solar wind variations. With x̃D,model1 and
ỹD,model1 denoting the results on the test-set of LSTM model 1 (section 9.3.1), the LSTM
substitution baseline writes as

x̃LST M = x̃>24 + x̃D,model1 (10.1)
ỹLST M = ỹ>24 + ỹD,model1 (10.2)

with x̃>24 and ỹ>24 being the smoothed long-term filters over three days as defined in
section 6.3. We use these to replace the filter baseline during identified disturbance
intervals. In figure 10.1, the resulting LSTM baseline (in green) is compared to the
baseline using previous diurnal variations (equations (6.9) and (6.10)) for X (top) and Y
(bottom) component. The measurements are in grey and the filter baseline is in black.

Figure 10.1: Comparison of the baseline using the diurnal model (orange) from equations
(6.9) to (6.10) and the LSTM model (green) during 2nd to 15th of April 2009 for the X
(upper panel) and Y (lower panel) component. The measurements are in grey and the
filter baseline is in black.

In the upper panel of figure 10.1, the LSTM baseline bLSTM for X in green shows a
typical quiet pattern which is, however, very different from the variations of the previous
quiet days (in black). In particular, a secondary smaller peak is not present while it is
observed in the diurnal baseline bdiurnal in orange. In general the diurnal baseline captures
the local variations from previous days well. This strongly suggests that the LSTM model
for xD requires further improvements with respect to more conventional methods.
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For the Y component in the lower panel, both the LSTM and the analytical model
describe possible quiet variations well. The location of the maxima and minima are well
captured, together with the amplitudes. The only difference is that the LSTM baseline
describes a small crest in-between minima and maxima. During this exemplary period,
we can conclude that the LSTM model 1, though not ideal, produces a passable baseline,
especially for the Y component, and motivates further work in this direction.

As such the introduced LSTM models may be used as a benchmark model for future
improvements. From the training insights, one of the first improvement steps is to increase
the number of epochs and increase the complexity of the model for xD. In general, a
dedicated hyperparameter tuning should be conducted to optimise the hyperparameters
like the learning rate, number of hidden layers and their amount of neurons and the look-
back time. Apart from using a fixed amount of epochs, flexible stopping conditions may
be put in place to avoid over- and underfitting. Additionally, further validation techniques
can be leveraged to improve model accuracy and input biases. For example, the walk-
forward validation method is based on the training of several models by using different
splits of the training and validation sets.

Furthermore, both models were trained on the basis of a ten year period and their
prediction were presented on a specific, limited time-interval. Further investigations of
model predictions for varying solar cycle phases and solar wind parameters, as well as
seasons should be conducted. In fact, the data in the training, test and validation sets is
continuous. Different splits of these sets can lead to generalisation improvements. Also
expanding the training set to include a wider range of time can help the model improve.
For describing quiet variations, one step would be to change the input data to contain
only CK days as has been done in chapter 5.2. In this case, however, the data is no longer
continuous. Other neural network architectures may be deployed, that take into account
the duration disturbances between quiet days.

Once the model is trained, predictions can be calculated within milliseconds, which
makes any of these models suitable for baselines in real-time applications from this point
of view. Further efforts should be put into feature selections, comparing different methods
and closely discussing them. From the considerations in this chapter, it is also clear, that
AI models are only as good as their input data and, that though they offer very powerful
and promising tools, the provided results still need close investigations and analysis, as is
the case for any modeling effort.
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Part IV

Conclusion and Perspective
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Final Conclusion and Perspective for
Future Work

In the very beginning of this thesis I formulated two research questions which I motivated
and tried to answer over the course of this thesis. In the following I summarise the found
answers.

1. Is the derived baseline reflecting the quiet variations of the
geomagnetic field?

Magnetic indices condense geomagnetic field information into a few values that aim to
describe the complex state of the near-Earth system driven by space weather (chapters
2 and 3). The response of the geomagnetic field to space weather events is an important
measure for their severity. As the geomagnetic field is a superposition of sources, the
storm signatures need to be extracted from other, quiet variations. This separation of
sources is achieved by geomagnetic baselines, that describe the quiet variations and build
the basis of magnetic indices. Various baseline methods exist, but are not applicable for
(near-)real time applications (chapter 3.2). Furthermore, while the steps for the derivation
of the baseline for most methods is well described, the demonstration of contained sources
is widely missing.

In chapter 4, I introduce a methodology to extract the quiet variations of the ge-
omagnetic field in an automatic and efficient way by using temporal filters with suit-
able frequency characteristics. In chapter 5, the resulting filter responses are thoroughly
analysed with respect to geomagnetic field source contribution and the identification of
quiet sources. Three analytical models are proposed to describe the observed variations.
Through detailed discussions and physical analysis I concluded that the filter method is
suitable to capture the quiet sources of the geomagnetic field. I refer to this preliminary
baseline as the filter baseline.

At this point, the answer to the first research question was presented. The thorough
analysis and physical interpretation of the filter baseline showed that it is able to auto-
matically extract and describe the sources that contribute to the quiet geomagnetic field
in mid-latitudes, the main ones being the secular variation and the solar quiet current
systems. An important result of the analysis is, that the filter baseline is able to capture
the intrinsic day-to-day variability of the Sq current systems which is not the case for the
majority of existing baseline methods. Furthermore, the derived models and the investi-
gation of the day-to-day variability improves our understanding of the climatology of the
solar quiet current systems.

However, the filter baseline is only preliminary, because the temporal filters do contain
disturbance contributions during non-quiet periods as outlined in chapter 5.3. Using the
filter baseline directly would thus lead to underestimation of disturbances within residuals.
I address this issue in chapter 6. The solution comprises two steps: step 1 identifies periods
during which a disturbance is underestimated and in step 2 I infer possible quiet variations
during the identified disturbance period. The initial filter baseline is adapted during the
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disturbance periods to lead to the proposition of several final baselines. In chapter 6.4, I
compare the results of the introduced baseline method with existing ones.

The main conclusion I can draw from this work is that the introduced baselines may be
used for dedicated magnetic index derivation as each of them describes the quiet geomag-
netic field variations satisfyingly well. Additionally, the proposed baseline derivation does
not rely on further input parameters than the magnetic field measurements themselves
and as such may be used in near-real time applications. Nonetheless, several aspects
remain that may be of interest for future work:

1. Real-time applications.
The filtering method is based on a centred 3-days window and thus the final baseline
will only be available with a delay of one and a half days. In an operational context
this leads to two products: 1) the quick-look baseline, that is based on either the
filtering of the previous 3 days or that takes into account some kind of forward
propagation of filter values and 2) the final baseline that is available after one and
a half days. Studies that quantify the differences between the quick-look and final
baseline would support the applicability of such an approach.

2. Source separation in geomagnetic field measurements.
Highly complex models taking into account a wealth of magnetic field measurements
from all around the globe including satellite data are employed to describe and
understand the geomagnetic field. These models are doing very good jobs in source
separation and the determination of various contributions, but cannot be deployed
in near-real time due to their complexity. Although the filtering method is able
to extract the quiet sources sufficiently well, it is not able to perform a full source
separation like those models. With the growing availability of reliable data streams
from several observatories, it may be possible to enhance the filtering method with
a spatial component by e.g. comparing the signal between neighbouring stations to
improve the source separation in near-real time.

3. Disturbance detection.
The introduced disturbance detection would also benefit from a spatial component.
This would enable the identification and propagation of disturbance events including
local anomaly detection. Additionally, further parameters would support the iden-
tification of full periods during which the filter baseline needs to be replaced, e.g.
to fully include onsets of events. In any case, the introduced disturbance detection
may be leveraged for further applications which require automatic identification of
storm and disturbance signatures.

4. The influence of the neutral atmosphere.
It is well known, and we also encountered this fact when deriving the models, that
the neutral atmosphere plays an important part in the day-to-day variability of the
solar quiet current systems as it directly influences the dynamo region through tides
and winds. Several highly sophisticated modelling efforts are actively pursued to
describe the neutral atmosphere and to gain insights into the ionospheric dynamo,
which would lead to a better description of the day-to-day variations and drivers
of the solar quiet current systems. Additional parameters that describe and char-
acterise winds and tides within the neutral atmosphere may also be leveraged to
improve the baseline description and replacement. Even a first useful step would be
to study the thermospheric density, temperature and winds at the location of the
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magnetic observatories. Such an approach can be realised by equipping observatories
with suitable instruments like e.g. the Fabry-Perot interferometer.

5. The involvement of the community.
As mentioned throughout this thesis, the identification of the baseline has no ob-
jective ground truth (at least at the time of this work). In the future sophisticated
geomagnetic field models and advances in research linked to Sun-Earth relation-
ships and geomagnetic field variations can help to identify such a ground truth.
Until then, it is important to involve the community, including users that have an
interest in the baseline (and derived indices) during the baseline derivation process.
Together, feasible and measurable criteria for baselines and related baseline-testing
procedures should be discussed and introduced.

6. Derivation of magnetic indices.
The introduced baseline options may be used in geomagnetic index derivation. Such
indices are not limited in their real-time derivation when using the introduced base-
line. Further studies should be conducted, demonstrating the baselines’ behaviour
and characteristics, as well as outline contained sources for additional geomagnetic
observatories in various longitudinal and latitudinal ranges. Such a study can also
support users in choosing the ideal baseline for their specific application and shed
light on advantages and disadvantages that need to be kept in mind. These aspects
are ideally discussed with the specific community (e.g. internal field modelling would
benefit from different properties than space weather forecasts).

2. To which extent can AI support the determination of the
baseline with respect to traditional methods?

The main focus of this thesis lays in the determination of the baseline with conventional
methods. However, in the second part I explored well-established machine and deep
learning methodologies to determine quiet variations with limited success. As has been
a common challenge, the neural network faced difficulties in describing the variations
in the X component while the Y component was depicted fairly well. Though limited,
the baseline substitution with the preliminary LSTM model is a promising start and the
results pave the way for future improvements that provide a variety of possibilities:

1. One model per component.
As X is so much more complicated than Y , one model per component, one that is
more complex and one that is simpler, should be used. Additionally, a model for
the third component Z that has not been considered in this work may allow the
mapping of induction effects.

2. Understanding the black box.
Once an appropriate model is found for the ground perturbations or quiet variations,
dedicated feature importance methodologies based on the type of model should be
deployed. Further parameters for the neutral atmosphere should be considered as
input for these models. This will enhance our understanding of the main drivers
within the results and thus of diurnal variations.

3. Disturbance detection.
Chapter 6 is dedicated to the identification of disturbance intervals. It would be of
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interest to know to which extend machine learning is able to identify such intervals.
As a first step, a supervised model can be used to reproduce the methodology
deployed in this thesis which then can be further improved. Another possibility
would be to deploy unsupervised methods for which the computer will derive its
own classifications of disturbances.

4. Now- and Forecasting capabilities.
The results from this thesis motivate the generation of (analytical or AI) baselines
for a number of observatories within a very short delay as this is possible as soon
as the magnetic field measurements are available. As an increasing number of ob-
servatories provides near-real time and high quality data, the now-casting of the
geomagnetic field state becomes evermore possible and accurate. Adding solar wind
data, sophisticated AI models can be derived and leveraged to enhance forecasting
capabilities.

In total, this thesis introduces a novel baseline derivation for near-real time applications
which results are extensively discussed and presented in an unprecedented way. For the
first time the application of AI for baseline derivations was deployed, delivering promising
results.

Still, this thesis opens up more questions than it was able to close. Each of the above
listed perspectives would deserve a doctoral study on its own for which I hope the current
work may be of support. Especially future work that derives new families of magnetic
indices with the help of the introduced baseline concepts is an exciting part I would be
happy to contribute to. The application of AI shows promising results and I am excited to
see further applications, especially in the support of baseline and magnetic index deriva-
tion. With this thesis I am proud to have contributed to the understanding of space
weather.

The End
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La météorologie de l’espace et le champ
géomagnétique

Au cours du siècle dernier, la technologie et la numérisation ont accéléré le progrès hu-
main, ce qui a conduit à ce qu’une part croissante de notre culture existe sous forme
numérique (Hodson, 2018). La révolution numérique a permis à l’humanité d’accéder
à un large éventail de nouvelles possibilités, notamment la communication et la naviga-
tion à l’échelle mondiale, ainsi qu’à une vaste base de données de connaissances en ligne.
Tout cela est alimenté par l’électricité et exige donc l’expansion et le développement des
infrastructures de réseau électrique tout autour du globe. Le ciel n’étant pas la limite,
nous avons commencé à peupler notre environnement spatial proche de la Terre de tech-
nologies destinées à soutenir notre infrastructure et à explorer le système solaire afin de
mieux comprendre le monde dans lequel nous vivons. Nous sommes devenus dépendants
de ces infrastructures et, par conséquent, nous avons également appris à connaître les
menaces auxquelles elles sont confrontées. Au cours des dernières décennies, l’expression
Météorologie de l’Espace est apparue pour décrire les effets de l’interaction entre notre
Soleil et la Terre sur le fonctionnement technologique et le bien-être humain. La National
Science Foundation des États-Unis définit la météorologie de l’espace comme suit (Wright
et al., 1997), traduit en français:

”Conditions sur le Soleil et dans le vent solaire, la magnétosphère, l’ionosphère et la
thermosphère qui peuvent influencer la performance et la fiabilité des systèmes

technologiques spatiaux et terrestres et peuvent mettre en danger la vie ou la santé
humaine”.

Au fur et à mesure que l’humanité s’étend et favorise ses avancées technologiques, la
météorologie de l’espace est en mesure d’avoir un impact sur une grande variété de do-
maines. De nombreuses conséquences socio-économiques sont bien documentées dans la
littérature (voir par exemple Koskinen et al. (2001); Desmaris (2015); Wolfert et al. (2017);
Eastwood et al. (2017)), y compris les exemples sélectionnés suivants:
• Charge utile scientifique des missions spatiales

Lors des missions spatiales, les satellites et leur charge utile constituée d’électronique
sensible doivent résister à l’environnement hostile de l’espace tout en accomplissant
leurs tâches. Les particules hautement énergétiques sont capables de pénétrer les
couches extérieures des satellites et d’endommager les composants fragiles en cor-
rompant les données ou, dans le pire des cas, en détruisant les composants électriques
et les instruments essentiels.

• Systèmes de communication et de positionnement
L’ionosphère module la propagation des signaux de radiofréquence. Les variations de
la densité d’électrons dues à l’augmentation de l’activité solaire peuvent entraîner une
perte de signaux, affectant ainsi des systèmes de communication et de positionnement
essentiels. Cela peut entraîner, par exemple, des erreurs de positionnement impor-
tantes dans l’agriculture de précision et une diminution de la précision des forages
directionnels (ex : pétroliers).

193



194 INTRODUCTION (FR)

• Dommages au réseau électrique
Les courants magnétosphériques et ionosphériques sont renforcés lors des perturbations
géomagnétiques et entraînent des variations magnétiques rapides et intenses. Accompa-
gnés de champs géoélectriques, ils sont responsables de courants induits dans la croûte
terrestre ou GIC dans les systèmes électriques. Les GICs peuvent entraîner des dom-
mages et des dysfonctionnements sur le réseau électrique, provoquant d’importantes
coupures de courant sur de vastes étendues.

Un autre aperçu plus récent et plus complet des effets de la météorologie de l’espace
est présenté dans Coster et al. (2021). En particulier, les événements météorologiques
spatiaux violents appelés orages solaires représentent un risque important. L’un des pre-
miers événements extrêmes documentés est l’événement de Carrington qui s’est produit
en 1859. Richard Carrington a observé d’intenses éruptions de lumière blanche au-dessus
d’un grand groupe de taches solaires à la surface du Soleil. Seulement 18 heures plus
tard, de fortes aurores étaient visibles dans le ciel nocturne mondial, y compris aux lat-
itudes moyennes et basses. À l’époque, la communication reposait sur les télégraphes,
qui reliaient les différentes stations par des câbles électriques de plusieurs kilomètres de
long. À l’échelle mondiale, si certains opérateurs télégraphiques ont signalé la perte de
leurs services de messagerie, d’autres avaient la possibilité d’envoyer des messages sans
alimentation électrique active. C’était à une époque où la technologie n’en était qu’à ses
débuts. Une étude récente sur un autre événement intense, la superorage de mars 1940
par Love et al. (2023), résume les impacts des variations exceptionnellement rapides du
champ géomagnétique comme, traduit en français, sévères pour les champs géoélectriques
induits sur les infrastructures de communication et de réseau électrique à l’époque.

Bien qu’aucun événement d’une intensité comparable ne se soit produit dans un passé
proche, de nombreux enregistrements d’impacts météorologiques spatiaux témoignent de
la menace actuelle. En 2003, les événements dits d’Halloween étaient une série de or-
ages accompagnées de magnifiques aurores boréales, mais qui ont entraîné d’importantes
pannes d’électricité en Laponie (Pulkkinen et al., 2005). Un exemple récent montre que les
orages très intenses ne sont pas les seules à pouvoir perturber nos activités: En 2022, un lot
de satellites de communication a été lancé mais n’a pas pu atteindre son orbite en raison
de réserves de carburant insuffisantes. La cause en était une orage solaire modérée qui a
très probablement entraîné un réchauffement et donc une expansion de l’atmosphère neu-
tre suffisants pour que la traînée des satellites soit plus forte que la poussée maximale de
leurs moteurs (Fang et al., 2022). Une autre étude intéressante porte sur les conséquences
possibles des conditions météorologiques spatiales lors de la tragédie du Titanic, qui ont
affecté les systèmes de navigation et de communication (Zinkova, 2020).

Ce ne sont là que quelques exemples de l’impact de la météorologie de l’espace, qui il-
lustrent son importance et la nécessité de mieux la comprendre et d’améliorer les capacités
de prévision. Notre société étant devenue plus dépendante à la technologie, une pertur-
bation globale des communications et des infrastructures constitue une menace mondiale
importante. La discipline de la météorologie de l’espace est consacrée à l’origine de ces
effets et traite de l’étude des phénomènes qui se produisent sur le Soleil et de leurs inter-
actions et effets sur la Terre et dans l’environnement de l’espace proche de la Terre. Par
nature, elle englobe une grande variété de domaines, de l’héliophysique à la géophysique.
La figure 10.2 présente une vue d’ensemble des principaux acteurs et des phénomènes liés
à la météorologie de l’espace.
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Figure 10.2: Une vue d’ensemble de la météorologie de l’espace décrivant les principaux
acteurs et les phénomènes associés, le Soleil 1 - 3 et la Terre 5 - 8 , et leur intercon-
nexion via le vent solaire 4 . Image reproduite avec l’aimable autorisation de l’ESA.

1 Le Soleil est notre étoile la plus proche et est le principal moteur et fournisseur
d’énergie pour les phénomènes météorologiques spatiaux.

2 Les éruptions solaires sont de fortes explosions d’énergie électromagnétique qui
prennent naissance à la surface du Soleil.

3 Les éjections de masse coronale (CME) sont des éruptions à grande échelle de
matériaux solaires qui sont éjectés dans l’espace.

4 Le vent solaire est un flux continu de particules provenant de l’atmosphère du
Soleil et entraînant avec lui le champ magnétique solaire, qui est à l’origine de
l’environnement magnétique particulier de la Terre.

5 La magnétosphère se forme lorsque le vent solaire comprime le champ magnétique
interne de la Terre du côté diurne et l’allonge du côté nocturne. Sa morphologie et
les systèmes de courant associés sont décrits dans le chapitre 2.2

6 Les sous-orages sont des perturbations à plus petite échelle du champ géomag-
nétique dont les conséquences sont principalement confinées aux régions polaires et
sont associées à des manifestations aurorales.

7 L’ionosphère est une couche de particules ionisées autour de la Terre qui coexiste
avec la haute atmosphère neutre de la Terre, appelée thermosphère.

8 Les orages géomagnétiques, accompagnés de sous-orages, induisent de fortes per-
turbations du champ géomagnétique qui ont des conséquences à l’échelle mondiale,
en particulier dans les régions équatoriales et les ceintures de radiation.

Les acteurs et les phénomènes associés liés à la météorologie de l’espace peuvent être prin-
cipalement décrits par la physique des plasmas, comme présenté dans le chapitre 1. Le
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détails du Soleil sont présentés en détail dans chapitre 2.1. La magnétosphère en tant que
structure à grande échelle est introduite et les systèmes de courant importants qui sou-
tiennent sa morphologie sont décrits en chapitre 2.2. Dans cette introduction condensée,
une discussion détaillée sur l’ionosphère est présentée, en mettant l’accent sur les lati-
tudes moyennes, étant donné que les phénomènes qui y sont associés sont d’une grande
importance pour ce travail. Puis, le champ géomagnétique et ses sources sont ensuite
décrits. Enfin, des mesures importantes dans le domaine de la météorologie de l’espace
sont introduites : les indices d’activité magnétique. Ceux-ci condensent les informations
géomagnétiques en un (ou plusieurs) indicateur(s) unique(s) qui caractérise(nt) l’état du
champ géomagnétique et agisse(nt) comme d’importants indicateurs de la météorologie
de l’espace. Le dernier chapitre de l’introduction traite des données de référence géo-
magnétiques nécessaires pour déterminer l’effet net des facteurs externes sur le champ
géomagnétique, ce qui représente le cœur du travail présenté.

L’ionosphère
L’atmosphère neutre de la Terre peut être décrite à partir de profil de température dis-
tincts en fonction de l’altitude. La troposphère, qui s’étend du sol à environ 12 km, est
la couche dans laquelle nous vivons et pour laquelle les températures diminuent avec
l’augmentation de l’altitude. La stratosphère, située entre 12 et 50 km d’altitude, se
caractérise par une élévation de la température due à l’absorption des UV solaires par
l’ozone. Entre 50 et 85 km, la mésosphère présente des températures qui chutent rapi-
dement avec l’augmentation de l’altitude en raison d’un refroidissement efficace par le
CO2. Au-dessus de 85 km, les températures augmentent rapidement dans la thermo-
sphère car le rayonnement solaire UV et les rayons X mous peuvent pénétrer facilement
à ces hauteurs, ce qui entraîne un chauffage efficace (de Pater & Lissauer, 2015). Le
rayonnement solaire ne se contente pas d’augmenter les températures, il est suffisamment
énergétique pour provoquer l’ionisation et joue un rôle important dans la création de
l’ionosphère. Comme l’atmosphère neutre est caractérisée par son profil de température,
l’ionosphère peut l’être par son profil de densité électronique, comme illustré dans figure
10.3. La haute atmosphère neutre se superpose à la basse ionosphère, ce qui entraîne
des interactions plasma-neutre, en particulier dans les régions D et E. On trouvera des
études détaillées sur la chimie et les mécanismes de transport dans l’ionosphère, ainsi
qu’un traitement de sa production et de ses variations, par exemple dans Kelley (1989)
et Schunk and Nagy (2009). Dans ce qui suit, les principaux processus d’ionisation et de
perte qui sont responsables du profil de densité distinct de l’ionosphère sont brièvement
décrits.

• Ionisation UV solaire
La principale source de production d’électrons dans l’ionosphère est l’irradiation
directe du Soleil. Les hautes énergies nécessaires pour ioniser les atomes et les
molécules de l’atmosphère, c’est-à-dire pour retirer des électrons de l’enveloppe de
l’atome, proviennent d’une source supérieure au régime UV du spectre de rayon-
nement solaire. Plus le rayonnement est puissant, plus il peut pénétrer profondé-
ment dans l’atmosphère, comme le montre la figure 10.3. Lorsqu’un atome ou une
molécule est ionisé, le rayonnement incident diminue son intensité car il dépense de
l’énergie pour l’ionisation. L’ampleur de cette diminution dépend de l’intensité ini-
tiale de la densité du gaz neutre, de la section efficace d’absorption et de la longueur
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Figure 10.3: Le profil de densité électronique de l’ionosphère avec des indications sur les
profondeurs de pénétration du rayonnement solaire. Les profils distincts pour la nuit et le
jour pendant le maximum et le minimum solaire sont indiqués. (extrait de Pfaff (2012))

du trajet du rayonnement dans le milieu. Selon la loi barométrique, la densité neutre
diminue avec l’altitude et l’intensité du rayonnement est plus intense avec l’altitude.
Cela conduit à un pic prononcé de densité électronique autour de 400 km, formant
ce que l’on appelle le profil de Chapman (Chapman, 1931).

• Ionisation par les particules énergétiques
Les particules énergétiques provenant essentiellement de la magnétopause et de la
queue qui pénètrent dans l’atmosphère par les lignes de champ magnétique ont
suffisamment d’énergie pour ioniser les atomes et les molécules. Ce processus de
production domine pendant la nuit, lorsque la principale source d’ionisation, le
rayonnement solaire, cesse. Ce processus est capable de maintenir le profil général de
l’ionosphère, mais dans une moindre mesure. La profondeur de pénétration marque
la hauteur à laquelle la particule entrante dépose la majorité de son énergie dans
l’atmosphère, ce qui conduit aux pics nocturnes. Ce processus est particulièrement
important aux hautes latitudes où l’ionisation et la conductivité sont renforcées par
la précipitation de particules provenant du vent solaire via la reconnexion côté jour
et la reconnexion côté queue.

• Recombinaison
Un processus de perte important est la recombinaison au cours de laquelle un ion
positif gagne un électron et forme un atome neutre. Le taux de recombinaison
dépend des densités d’ions et d’électrons, ainsi que de la fréquence de collisions.
Dans la basse ionosphère, la recombinaison est dominante lorsque les fréquences de
collision augmentent en raison de la forte densité d’atomes et de molécules neutres.

• Échange de charges
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Le processus d’échange d’électrons entre des particules en interaction et en collision
(par exemple, entre des atomes neutres et des ions) est appelé échange de charges.
Ce processus modifie la nature des ions et est proportionnel au nombre d’électrons.
Il s’agit d’un processus chimique important dans la région F de haute altitude de
l’ionosphère, qui convertit les ions hydrogène en ions oxygène et vice-versa.

La combinaison de ces processus forme le profil de densité caractéristique de l’ionosphère,
tel qu’il est esquissé pour les latitudes moyennes dans la figure 10.3. Selon ce profil, il est
courant de diviser l’ionosphère en trois couches principales: les régions D, E et F.

• La région D
La région D est située à une altitude d’environ 60 à 90 km. Le principal processus
d’ionisation est le rayonnement X solaire de haute énergie, qui peut pénétrer à ces
profondeurs. En raison de la densité relativement élevée d’atomes et de molécules
neutres de l’atmosphère, les fréquences de collision sont élevées, ce qui conduit à un
gaz qui n’est que faiblement ionisé. Dans cette région, la chimie domine et des ions
négatifs et complexes peuvent être formés. Pendant la nuit, la source de production
de l’irradiation solaire cesse et les processus de perte dominent, de sorte que la
région D disparaît. Temporairement, le niveau d’ionisation dans la région D peut
être remarquablement augmenté lors d’événements tels que les éruptions solaires.
Même si elle n’est que faiblement ionisée, la région D est un important atténuateur
pour les signaux de communication, des taux d’ionisation plus élevés entraînant une
plus grande atténuation.

• La région E
À des altitudes comprises entre 90 et 150 km, la couche E se forme en raison de
l’absorption des rayonnements EUV à UV solaires lointains, avec des densités maxi-
males autour de 110 km. À ces hauteurs, des densités substantielles de neutres sont
encore présentes et le gaz est partiellement ionisé. Cela permet de fortes interac-
tions dues au mouvement différentiel entre les particules ionisées et neutres, donnant
lieu à la dynamo de la région E qui est la source d’importants systèmes de courant
dans l’ionosphère. En général, cette couche est en équilibre entre les processus de
production, d’échange de charge et de perte, et donc en équilibre chimique. Les pré-
cipitations de particules aurorales sont capables de maintenir la région E pendant
la nuit aux latitudes plus élevées.

• La région F
La région F peut être classée en deux sous-régions pendant la journée : la région
F1 se forme par absorption du rayonnement UV court à environ 200 km suivie
par la formation chimique d’ions NO+ qui possèdent un potentiel d’ionisation très
faible. Elle disparaît au cours de la nuit lorsque cette source de production cesse.
La région F2 située à une altitude d’environ 300 km est principalement peuplée
d’ions Oxygène. Pendant la journée, O+ est produit localement dans l’ionosphère et
transporté vers le haut le long du champ magnétique jusqu’à la plasmasphère. Celle-
ci agit comme un réservoir et les particules sont transportées vers le bas, maintenant
la région F pendant la nuit, car les effets de recombinaison sont également réduits
en raison des faibles densités.

Chacune de ces couches dépend en grande partie du rayonnement solaire, ce qui crée les
profils de densité distincts jour et nuit sur la figure 10.3. L’intensité du rayonnement
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solaire varie en fonction du cycle solaire, tout comme le profil d’ionisation. Pendant
le maximum solaire (et donc le maximum de taches solaires), la densité d’électrons est
nettement plus élevée en raison de l’augmentation du rayonnement solaire que pendant
le minimum solaire (et donc le minimum de taches solaires). La différence est de l’ordre
d’un à deux ordres de grandeur. En outre, comme l’illumination solaire varie en fonction
des saisons, les densités sont plus élevées en été qu’en hiver.

La dynamique ionosphérique de la région E

Aux altitudes de la région E, les particules chargées et neutres coexistent en abondance
et permettent de fortes interactions entre ces populations, créant ainsi ce que l’on appelle
la dynamo ionosphérique. À son tour, cette dynamo donne naissance à d’importants
systèmes de courants dans l’ionosphère. La région E est également appelée région de la
dynamo ionosphérique. À ces altitudes, les constituants neutres et ionisés coexistent en
abondance et le mouvement différentiel entre les électrons et les ions donne lieu à des
courants ionosphériques, voir les courants Sq ci-dessous. Dans cette région, le plasma
peut être considéré comme partiellement ionisé et magnétisé avec des densités permettant
des collisions abondantes. La fréquence cyclotron électronique est plus élevée que la
fréquence de collision électron-neutre pour les électrons qui sont plus légers. En revanche,
la fréquence cyclotronique des ions, plus lourds, est inférieure à leur fréquence de collision
avec les neutres. Les électrons sont donc figés dans le champ magnétique, tandis que les
ions sont régis par les vents et les marées de l’atmosphère neutre. Par conséquent, dans
la loi d’Ohm (1.25), le tenseur de conductivité devient anisotrope comme dans (1.28) et
s’écrit comme suit

j = σ(E + U × B) , (10.3)

avec U la vitesse du vent neutre et le tenseur de conductivité anisotrope σ avec la con-
ductivité de Pedersen σP , la conductivité de Hall σH et la conductivité parallèle σ∥. Les
conductivités dépendent de la densité électronique et des fréquences de collision ions-
électrons et ions-neutres. Les expressions exactes sont dérivées dans K.-I. Maeda (1977)
et Takeda and Araki (1985). La figure 10.4 illustre un profil de conductivité typique dans
l’ionosphère diurne aux latitudes moyennes, tel qu’il est généré par le IPIM (Marchaudon
& Blelly, 2015).

La conductivité de Hall σH (en bleu) culmine à des altitudes plus basses avec des
valeurs plus élevées que la conductivité de Pedersen σP (en rouge). La conductivité
parallèle σ|| (en noir) est toujours supérieure à σP et σH . Ces conductivités sont à la
base des systèmes de courants ionosphériques, car les courants parallèles (alignés sur le
champ), de Pedersen et de Hall sont générés et coexistent dans ce système. Le mouvement
différentiel entre les ions et les électrons crée un courant de Hall à travers le mouvement
des électrons perpendiculaires aux champs électriques et magnétiques, puisque les ions
sont fortement ralentis par les collisions avec les neutres. À des altitudes plus élevées, où
la fréquence cyclotronique et la fréquence de collision des ions deviennent comparables, les
ions commencent à se déplacer dans la direction du champ électrique et sont porteurs d’un
courant de Pedersen. Dans l’ionosphère des hautes latitudes, les courants de Pedersen ont
pour rôle de fermer les courants alignés au champ magnétique ou Field-Aligned Currents
(FAC) dans l’ovale auroral et sont associés aux processus auroraux (Baker, 2019).
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Figure 10.4: Profil de conductivité de la région E et F dans l’ionosphère latitudinale
moyenne à l’aide de IPIM. (Marchaudon & Blelly, 2015).

Systèmes de courant Solar Quiet
Aux latitudes basses et moyennes, la dynamo de la région E alimente un important système
de courants : le système de courants dit Soleil Calme ou Solar Quiet (Sq). Le nom de
courant solaire calme vient de leur empreinte sur les mesures du champ géomagnétique,
car ils induisent des variations diurnes très douces et caractéristiques en l’absence de
orages solaires, c’est-à-dire pendant les périodes géomagnétiquement calmes.

Figure 10.5: Simulation de l’intensité globale des systèmes de courant solaire calme en
cas de faible activité solaire (à gauche) et de forte activité solaire (à droite). (Tiré de
Yamazaki and Maute (2017))

La forme globale des systèmes de courant Sq est représentée sur la figure 10.5 et forme
deux vortex, un dans chaque hémisphère. La direction des courants est inversée dans
les deux hémisphères, c’est-à-dire que dans l’hémisphère nord (NH), la cellule de courant
suit le sens inverse des aiguilles d’une montre et dans l’hémisphère sud (SH), elle suit
le sens des aiguilles d’une montre. À l’équateur géomagnétique, où les deux cellules se
rencontrent, un courant zonal très fort circule, renforcé par la configuration magnétique
spécifique de cette région : l’électrojet équatorial ou EEJ, voir le chapitre 2.3.3.1. Les
courants Sq ne peuvent pas être mesurés directement, mais sont indirectement dérivés des
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données du champ magnétique (voir chapitre 2.6.1). La figure 10.6 illustre les schémas
typiques induits par les cellules de courant Sq dans les relevés des magnétomètres pour un
grand ensemble de stations magnétiques réparties en latitude et alignées sur un secteur de
longitude. Le champ magnétique est indiqué en coordonnées géographiques, N pointant
vers le Nord, E vers l’Est et Z verticalement vers le bas. La composante Nord indique la
position par rapport au foyer de la cellule actuelle. Dans le NH, elle est négative lorsque la
station est située au-dessus du foyer et positive lorsqu’elle est située en dessous du foyer.
Dans le SH, c’est l’inverse car la cellule de courant circule dans la direction opposée. La
composante Est présente un signal sinusoïdal régulier qui change de signe entre NH et
SH. La composante Z ne semble pas affectée. Dans les trois composantes, les empreintes
de l’électrojet équatorial sont clairement visibles autour de l’équateur magnétique.

Figure 10.6: Variations quotidiennes moyennes des mesures du champ magnétique dans
les trois composantes Nord (N), Est (E) et verticale descendante (Z) entre mai et août
1996-2007. (Extrait de Yamazaki and Maute (2017))

Comme ces cellules sont alimentées par la dynamo de la région E, qui dépend de
l’irradiation solaire directe, ces systèmes de courant sont concentrés sur le côté jour. En
raison du couplage avec l’atmosphère neutre dans la région dynamo, les courants Sq sont
fortement modulés par les marées atmosphériques. Ces marées sont des oscillations à
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l’échelle mondiale avec des périodes harmoniques d’un jour, c’est-à-dire 24 heures, 12
heures, 8 heures, 6 heures et ainsi de suite, dont la marée de 24 heures est le principal
moteur des courants Sq (H. Maeda, 1955; Kato, 1957; Lindzen & Chapman, 1969). Grâce
à l’absorption du rayonnement infrarouge dans la troposphère et à l’absorption par l’ozone
dans la stratosphère, la chaleur latente libérée génère des marées qui se propagent vers le
haut. En se propageant vers le haut, elles croissent de manière exponentielle et, lorsqu’elles
atteignent la région dynamo, elles ont des amplitudes de plusieurs dizaines de mètres par
seconde dans le vent horizontal. Un tiers des courants totaux Sq de la planète est entraîné
par de telles marées se propageant vers le haut (Yamazaki & Richmond, 2013; Yamazaki,
Richmond, Maute, Wu, et al., 2014). En analysant les mesures des magnétomètres des
latitudes moyennes, les spectres montrent des pics distincts à 24h, 12h, 8h et 6h qui sont
un indicateur clair du système de courant Sq (Campbell, 1989).

Comme indiqué précédemment et comme le montre la figure 10.3, la densité d’électrons
et donc la conductivité varient en fonction du cycle solaire et modulent par conséquent le
système de courants solaires calmes. Les variations distinctes du cycle solaire, saisonnières
et journalières des courants Sq sont bien documentées et décrites dans ce qui suit. Un
aperçu et une description détaillés des courants Sq et de l’électrojet équatorial figurent
dans Yamazaki and Maute (2017).

• Dépendance du cycle solaire
La conductivité de l’ionosphère est étroitement liée à l’activité solaire. Cela affecte
l’amplitude et la position du foyer des cellules de courant Sq. L’amplitude est
généralement deux fois plus importante pendant le maximum solaire que pendant le
minimum (Takeda, 1999). Diverses études suggèrent que l’amplitude est fortement
corrélée de manière linéaire avec des indicateurs solaires tels que F10.7 (Yamazaki
& Kosch, 2014; Yamazaki & Maute, 2017). Des études ont montré que l’amplitude
des composantes de Fourier de 24h, 12h et 8h dépend fortement de F10.7, tandis
qu’il en va de même pour la phase des composantes de 24h et 12h et donc pour
l’emplacement du foyer qui se déplace vers des heures locales plus tardives à mesure
que l’activité solaire augmente (Olsen, 1988; Yamazaki & Kosch, 2014; Yamazaki &
Maute, 2017).

• Dépendance saisonnière
En général, l’amplitude du Sq est plus élevée en été qu’en hiver aux latitudes
moyennes en raison d’une irradiation solaire prolongée. Les amplitudes maximales
sont observées lors des deux équinoxes aux latitudes basses et équatoriales, ce qui
peut être lié aux influences de l’électrojet équatorial et à d’éventuels effets équinoc-
tiaux. Les amplitudes en été sont environ trois fois plus élevées qu’en hiver (Takeda,
1999; Yamazaki & Maute, 2017). En hiver notamment, les courants peuvent devenir
si faibles que la cellule elle-même peut disparaître (Campbell et al., 1993; Rastogi
et al., 1996; Stening & Winch, 2013). La saison a également un effet significatif
sur l’emplacement du foyer. En été, le foyer est déplacé vers des heures locales
plus précoces qu’en hiver, ce qui est vrai pour les deux hémisphères (Campbell &
Schiffmacher, 1987, 1988).

• Variabilité d’un jour à l’autre
Les systèmes de courant Sq présentent une forte variabilité journalière (D2D) en
termes de forme, d’amplitude et de phase. Cette variabilité D2D est bien docu-
mentée, mais ses mécanismes d’entraînement ne sont pas entièrement compris, voir
par exemple Hasegawa (1960); Stening (2008). La figure 2.13 est un exemple de
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ces variations pour quatre stations du secteur indien, réparties sur une petite bande
longitudinale, couvrant les latitudes moyennes à basses, voir le panneau a. Le pan-

Figure 10.7: Variations journalières de la cellule nord du système de courant solaire calme.
Le panneau a indique l’emplacement des observatoires magnétiques. Le panneau b montre
la variation journalière moyenne de la composante horizontale H. Le panneau c montre
la valeur de la composante H à midi chaque jour durant 2 mois. (Tiré de Yamazaki and
Maute (2017))

neau b illustre la variation journalière moyenne ∆H de la composante horizontale
du champ géomagnétique entre mars et avril 2009. De même, la forme de cette
variation renseigne sur la localisation de l’observatoire par rapport au foyer de la
cellule. Kashi (KSH) est proche du foyer, de sorte que lorsque la cellule est ex-
actement au-dessus de la station, ∆H est nul avec des signes changeants avant et
après la traversée. Novossibirsk (NVS) est au nord de la cellule actuelle et est
donc influencé par la partie supérieure, vers l’ouest, du courant Sq. Jaipur (JAI)
et Alibag (ABG) sont au sud du foyer et sont donc influencés par la partie est.
Enfin, le pic observé à Tirunelveli (TIR) est induit par la partie la plus forte de
l’EEJ. Le panneau c montre les valeurs de ∆H à midi pendant la même période
pour chaque station et chaque jour. Les amplitudes peuvent varier de façon très
irrégulière d’un jour à l’autre à toutes les latitudes. Il s’agit d’une caractéristique
persistante du système de courant solaire calme qui est également présente pendant
les périodes magnétiquement très calmes, comme c’est le cas pour la période de la
figure 2.13 qui se situe pendant l’année très calme de 2009 (pendant le minimum
solaire). Cela suggère que la variation intrinsèque de D2D a ses racines dans les
vents et les marées de l’atmosphère neutre. De nombreuses études et simulations
ont été menées pour souligner l’importance des facteurs de la basse atmosphère,
comme par exemple Kawano-Sasaki and Miyahara (2008); Jin et al. (2011); Fang
et al. (2013); Yamazaki, Richmond, Maute, Liu, et al. (2014). D’autres études et
recherches sont nécessaires pour mieux comprendre les causes de la variabilité de
D2D.
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Orages géomagnétiques

Si le champ magnétique interplanétaire (IMF) du vent solaire pointe vers le nord, le taux
de reconnexion avec le champ géomagnétique est considérablement réduit (voir chapitre
2.2). Si cette condition se maintient pendant une longue période, la magnétosphère peut
être considérée comme étant dans un état calme (Moretto et al., 2021). Cependant, si le
vent solaire entrant a un IMF dirigé vers le sud (Bz négatif), favorisant la reconnexion côté
jour, des quantités considérables d’énergie et de particules provenant du vent solaire sont
injectées dans le système magnétosphère-ionosphère. Cela entraîne une augmentation de
la convection et des taux de reconnexion, renforce les systèmes de courant et conduit à
d’autres phénomènes qui jouent un rôle important dans la météorologie de l’espace : les
orages géomagnétiques.

Un orage géomagnétique est une perturbation magnétique observée dans le monde
entier, qui dure de plusieurs heures à plusieurs jours et ne se limite pas aux hautes lat-
itudes, mais affecte également les basses et moyennes latitudes. On dit donc qu’il est
géo-effectif. Ces perturbations du champ géomagnétique à l’échelle mondiale sont in-
duites par de puissants événements transitoires solaires tels que les CME, accompagnés
d’un IMF Bz prolongé vers le sud pendant plusieurs heures. La quantité d’énergie déposée
dans le système magnétosphère-ionosphère et donc le niveau de géo-efficacité dépendent
fortement des paramètres du vent solaire tels que la vitesse, la densité ainsi que la force
et l’orientation de l’IMF. En raison du dépôt accru d’énergie pendant les orages géomag-
nétiques, les processus pré-existants sont considérablement renforcés. Cela se traduit par
une activité accrue des sous-orages et une intensification des électrojets auroraux. La
caractéristique la plus marquante est l’augmentation du courant annulaire qui subit une
injection élevée de particules en raison de l’augmentation de la reconnexion depuis la
queue magnétosphérique (Kistler et al., 2016). Sa signature la plus claire se trouve dans
les mesures du champ géomagnétique. Lorsque le courant annulaire, qui s’écoule vers
l’ouest dans le plan équatorial, s’intensifie pendant un orage, son champ magnétique in-
duit est en sens inverse au champ dipolaire terrestre, ce qui entraîne une nette dépression
de la composante horizontale H, comme l’indique la figure 10.8.

Les orages géomagnétiques peuvent être divisés en trois phases : la phase initiale,
la phase principale et la phase de rétablissement. La phase initiale est marquée par
une augmentation positive associée à la compression du champ magnétique côté jour
en raison de l’augmentation de la pression du vent solaire. Lorsque la compression est
particulièrement forte, un Storm Sudden Commencement (SSC) peut être observé sous la
forme d’une forte déviation positive, toujours dans les doonées de magnétomètres au sol.
La phase principale est indiquée par une forte déviation négative due à l’augmentation
du courant annulaire. La phase de rétablissement englobe le retour à la normale du
courant annulaire après l’orage (Hutchinson et al., 2011). Le champ magnétique des
perturbations aux latitudes basses et moyennes n’est généralement pas axisymétrique.
Pendant la phase principale de l’orage, le courant annulaire est généralement asymétrique
car les ions injectés sont principalement présents dans les secteurs soir et après-midi.
Lorsque l’injection se termine et que la phase de rétablissement commence, le courant
annulaire devient plus symétrique (Sugiura & Chapman, 1960; Akasofu & Chapman,
1964; Weygand & McPherron, 2006).

Il est courant de caractériser les orages géomagnétiques en fonction de la déviation
globale de la composante magnétique H induite par le courant annulaire renforcé. Cette
déviation est résumée par l’indice de perturbation temporelle (Dst) dérivé des quatre
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Figure 10.8: Les effets des orages magnétiques sur la composante horizontale des mesures
du champ géomagnétique dans quatre observatoires des basses latitudes. Les phases
typiques de l’orage sont indiquées. 1γ correspond à 1 nT. (Tiré de Campbell (2003))

observatoires magnétiques de la figure 10.8. Gonzalez et al. (1994) définit les orages
géomagnétiques comme suit, traduit en français :

”... un intervalle de temps pendant lequel un champ électrique de convection
interplanétaire suffisamment intense et durable conduit, par le biais d’une énergisation
substantielle du système magnétosphère-ionosphère, à un courant annulaire intensifié
suffisamment fort pour dépasser un certain seuil clé de l’indice de quantification de la

durée de l’orage Dst.”

C’est pourquoi l’indice Dst sur 1 heure et, de nos jours, sa version sur 1 minute,
l’indice SYM-H, ont été utilisés dans de nombreuses études pour définir et classer les
orages géomagnétiques (voir le chapitre IV pour plus de détails sur ces indices). Alors que
les CME fortes peuvent provoquer de très forts orages avec des valeurs Dst associées bien
inférieures à −100 nT, les Régions d’interaction en corotation (CIR) peuvent provoquer
des orages modérés, en particulier pendant les phases de déclin et de faible activité solaire
(Allen et al., 2020).

Les orages géomagnétiques à l’échelle mondiale et les sous-orages à l’échelle locale
peuvent avoir des effets indésirables et néfastes sur nos technologies et constituer une
menace pour la santé et la sécurité humaines, comme nous l’avons vu dans l’introduction
de ce chapitre. L’amélioration de nos capacités à les prévoir avec précision est un domaine
important et actif qui a également commencé à exploiter les méthodes d’intelligence arti-
ficielle (Camporeale, 2019; Nitti et al., 2022).
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Les effets directs des orages comprennent le réchauffement de la haute atmosphère en
raison de l’augmentation de la convection des particules chargées, responsable d’une fric-
tion ions-neutres ainsi que des précipitations de particules, ce qui entraîne un frottement
supplémentaire sur les satellites en orbite basse. La convection et les précipitation de par-
ticules provoquent également des modifications chimiques importantes de l’ionosphère qui
entraînent des changements de densité et une déviation des signaux radio la traversant,
ainsi que des erreurs de positionnement GNSS, perturbant les systèmes mondiaux de nav-
igation par satellite. L’intensification des courants ionosphériques provoquent également
des courants géomagnétiques induits dans la croûte nuisibles pour les réseaux électriques
et les pipelines.

Champ géomagnétique
Le champ géomagnétique est une superposition de nombreuses sources magnétiques, le
champ magnétique interne de la Terre étant le principal contributeur, communément ap-
pelé champ principal. La création de l’ionosphère via le rayonnement solaire et l’interaction
du vent solaire avec le champ principal de la Terre dans la magnétosphère entraîne un
système complexe et couplé de courants au sein de ces régions. Selon la loi d’Ampère
(équation (1.35), chacun de ces courants induit un champ magnétique et contribue ainsi
au champ géomagnétique global.

La figure 10.9 illustre quelques sources importantes du champ géomagnétique. Elles
sont classées en deux catégories: les sources externes et les sources internes. Les sources
externes comprennent les différents systèmes de courants déjà mentionnés ci-dessus tels
que : courant annulaire, Sq, FAC et EEJ. Les sources internes comprennent entre autre
le champ principal et sont abordées ci-après.

Champ magnétique principal de la Terre
En première approche, le champ principal peut être approximé par un champ dipolaire
au sol. Cependant, cette approximation reste grossière. En effet, le champ magnétique
interne contient des longueurs d’onde spatiales plus courtes non seulement de son champ
principal mais aussi de son champ crustal. Les mesures, acquises à la surface ou à l’altitude
des satellites, contiennent des contributions de diverses sources internes et externes cou-
vrant de larges gammes d’échelles spatiales et temporelles (Mandea et al., 2019). Dans
les profondeurs de notre Terre, les niveaux de pression et de température sont si élevés
que la roche, le fer et le nickel fondent, constituant le noyau externe fluide. Ces fluides
sont en mouvement par convection et, avec la rotation de la Terre, génèrent un courant
électrique qui induit un puissant champ magnétique. Ce processus est appelé dynamo
géomagnétique et serait à l’origine du champ magnétique intrinsèque de la Terre (Gauss,
1877; Landeau et al., 2022). Dans un rayon d’environ 6RE, ce champ peut être approx-
imé par un champ magnétique dipolaire avec des intensités de ∼60 000 nT aux pôles et
∼25 000 nT à l’équateur. La géométrie dipolaire est à l’origine des miroirs magnétiques
qui conduisent à la formation des ceintures de radiation et du courant annulaire, comme
détaillé dans le chapitre 2.2. L’axe du dipôle est incliné par rapport à l’axe de rotation de
la Terre d’environ 11◦ et le pôle sud magnétique est situé dans l’hémisphère nord, tandis
que le pôle nord magnétique est situé dans l’hémisphère sud.

Le processus dynamo n’est pas stable, de sorte que l’intensité et la direction du champ
magnétique changent lentement mais continuellement. Les échelles de temps impliquées
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Figure 10.9: Vue d’ensemble des sources internes et externes du champ géomagnétique.
(Tiré de (Olsen, 2016))

dans cette dérive régulière vont de quelques années à des millénaires. Le paléomagnétisme
est le domaine d’étude qui utilise des techniques spécialisées pour extraire des informa-
tions sur le champ magnétique à partir d’échantillons très anciens afin de comprendre ces
changements à long terme du champ principal. Les événements les plus spectaculaires
sont les inversions de pôles, au cours desquelles l’intensité du champ diminue pendant
quelques milliers d’années jusqu’à ce que l’inversion ait lieu, suivie d’un renforcement du
champ au cours des milliers d’années suivantes (Gubbins, 2008). Actuellement, le pôle
sud magnétique se déplace à raison de 60 km par an du Canada vers la Sibérie et le pôle
nord magnétique à raison d’environ 5 km par an de l’Antarctique vers l’Australie (Olsen
& Mandea, 2007). Ces changements progressifs sont appelés variations séculaires et con-
stituent un domaine d’étude actif (Bloxham & Gubbins, 1985; Finlay et al., 2016, 2020).
Bien que graduelles, elles sont des facteurs importants pour la météorologie de l’espace,
car la modification des configurations du champ peut directement accentuer ses effets
(Mandea & Chambodut, 2020).

Afin de décrire le champ magnétique en constante évolution, des modèles sophistiqués
sont générés sur la base des mesures du champ géomagnétique. Le modèle du champ géo-
magnétique international de référence (IGRF) est produit et mis à jour par l’Association
Internationale de Géomagnétisme et d’Aéronomie (IAGA). Le modèle représente le champ
géomagnétique en termes d’harmoniques sphériques dont les coefficients sont déterminés
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tous les cinq ans pour tenir compte des changements temporels de la variation séculaire.
L’expansion des harmoniques sphériques montre que la contribution du premier degré (la
partie dipolaire) représente 93 % du champ magnétique total. Le modèle le plus récent
est IGRF-13 et il est valable pour les années 1990 à 2025 (Alken et al., 2021).

Autres sources internes

Dans la croûte terrestre, l’aimantation rémanente et induite de minéraux magnétiques
tels que la magnétite et le titane se trouve dans la lithosphère. L’ère spatiale a permis
de cartographier le champ lithosphérique grâce à des études par satellite (Thébault et
al., 2016). Les intensités de champ associées dépendent de l’emplacement et ne dépassent
généralement pas 100 nT, mais peuvent atteindre plusieurs centaines de nanotesla pour
des anomalies majeures dans des régions comme Koursk et Bangui (Taylor & Frawley,
1987; Njiteu Tchoukeu et al., 2021). Les moyennes du biais crustal et les variances re-
spectives pour les observatoires géomagnétiques sont données par exemple dans Verbanac
et al. (2015) dont une sélection est résumée dans le tableau 2.1. La variation autour
de la moyenne est de nature oscillatoire et peut être liée à des erreurs dans les données
d’entrée et à des influences provenant de champs externes. Une autre source interne est la
circulation océanique qui génère un champ magnétique qui peut être détecté à proximité
des océans et des régions côtières. Le courant électrique associé est généré par des ions
de sel qui sont déviés par la force de Lorentz dans différentes directions en raison de leur
polarité (Petereit et al., 2022).

Variabilité du champ géomagnétique

Lors de l’enregistrement du champ géomagnétique, le signal résultant est une compo-
sition de toutes les sources internes et externes, ce qui se traduit par un large spectre
d’amplitude et de fréquence, comme le montre la figure 10.10. Le champ crustal est pra-
tiquement constant et n’est pas représenté dans le spectre. Les variations induites par
le champ magnétique interne sont progressives et s’étalent sur de longues périodes. Elles
sont associées à des changements de grande amplitude dans la partie basse fréquence
du spectre. Il s’agit notamment des inversions de pôles qui s’étendent sur des millions
d’années et de la variation séculaire qui modifie constamment l’amplitude, reconnaissable
en quelques mois ou années. Les sources externes agissent sur des échelles de temps plus
courtes et sont associées à des variations d’amplitude plus faibles. Le cycle solaire, avec
sa période d’environ 11 ans, induit des amplitudes de l’ordre de 10-20 nT. Aux latitudes
moyennes, les systèmes de courants solaires calmes peuvent induire des variations diurnes
et subdiurnes de 20-50 nT. Les sous-orages sont responsables de variations du champ pou-
vant atteindre 1000 nT dans les régions polaires pendant plusieurs heures, tandis que les
orages géomagnétiques peuvent perturber le champ géomagnétique mondial de l’ordre de
centaines de nanotesla, même aux latitudes moyennes pendant plusieurs jours. La foudre
induit des résonances électromagnétiques entre la surface de la Terre et l’ionosphère. Ces
résonances sont appelées résonances de Schumann et se situent dans le régime des hautes
fréquences (Price, 2016). À l’extrémité du spectre des hautes fréquences, on trouve des
générateurs de bruit d’origine humaine, notamment le bruit des lignes électriques et les
émissions radio (Mandea et al., 2019).
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Figure 10.10: Le spectre amplitude-fréquence du champ géomagnétique avec des indica-
tions sur les sources associées. (Tiré de Constable (2016))

Mesures du champ géomagnétique

Les sources du champ géomagnétique sont très variées dans l’espace et dans le temps,
comme l’indique la figure 10.10. Les variations du champ géomagnétique qui se produisent
à l’échelle des temps géologiques, comme les inversions de pôles, sont déterminées à l’aide
de techniques de paléomagnétisme (Gilder & Lhuillier, 2019). Pour d’autres variations
plus courtes, on utilise des instruments spécialisés qui enregistrent les champs magnétiques
ambiants. Avec l’avènement de l’ère spatiale, il est non seulement possible de collecter
des données depuis le sol, mais aussi de mesurer la configuration du champ magnétique
dans l’espace (Marchaudon, 2019).

À la surface de la Terre, les observatoires magnétiques sont des installations situées
sur des sites géographiques stables qui hébergent des magnétomètres et fournissent des
mesures absolues du champ géomagnétique de haute qualité, sur de longues séquences,
les enregistrements continus les plus longs remontant à plus de 150 ans. Aujourd’hui, un
nombre croissant d’observatoires magnétiques sont en mesure de fournir des données de
haute qualité sur le champ magnétique avec une résolution temporelle pouvant atteindre
quelques secondes. Une liste de ces observatoires est tenue à jour par le IAGA, avec leur
désignation officielle en trois lettres. Par exemple, l’observatoire français de Chambon-



210 INTRODUCTION (FR)

la-Forêt est désigné par l’abréviation CLF. Le INTERMAGNET1, garantit la qualité des
données à la résolution minute de ses observatoires membres et facilite l’échange gratuit
de données entre les nations et la création de produits de données géomagnétiques. Les
données du réseau INTERMAGNET sont fournies en format vectoriel avec une résolu-
tion de 0.1 nT et une cadence de 1 minute. 41 observatoires magnétiques ont participé
à la création de ce réseau en 1991. Depuis, le nombre d’observatoires membres n’a cessé
d’augmenter, bien que certaines stations se soient retirées complètement ou pour une
durée limitée en raison de dysfonctionnements ou de l’arrêt de la production de données
(Kerridge, 2001; Gilder & Lhuillier, 2019). L’annexe A fournit des détails sur les observa-
toires INTERMAGNET entre 1991 et 2019. La distribution mondiale des observatoires
est également illustrée dans la figure 4.1.

D’autres installations au sol comprennent des réseaux de magnétomètres qui peuvent
être déployés de manière flexible. Ils sont généralement utilisés dans le cadre de campagnes
de mesure visant à étudier des phénomènes magnétiques spécifiques sur une courte période.

Si ces options fonctionnent bien sur les sols solides, elles sont moins adaptées aux
mesures magnétiques sur les étendues d’eau. Les deux tiers de notre planète étant re-
couvert d’océans, les mesures du champ magnétique sont soumises à d’importantes re-
strictions. Des études magnétiques marines et aéroportées sont menées sur l’eau et dans
l’espace aérien afin de couvrir ces parties du monde sur une distance et pendant une durée
limitées.

Systèmes de coordonnées
Les systèmes de coordonnées sont utilisés pour localiser les objets dans l’espace et pour
donner un cadre de référence aux champs de vecteurs. En général, les systèmes de co-
ordonnées sont adaptés aux phénomènes et aux conditions qui nous intéressent. Pour le
champ géomagnétique, plusieurs systèmes de coordonnées magnétiques adaptés sont en
place. Un examen approfondi, y compris les définitions des systèmes les plus utilisés, est
disponible dans Laundal and Richmond (2016).

Les mesures du champ géomagnétique au sol sont généralement effectuées dans un
système de coordonnées géographiques locales (NED) dont l’axe x pointe vers le nord
géographique, l’axe y vers l’est géographique et l’axe z vers le bas, d’où l’appellation de
système NED. Les composantes B = (X, Y, Z) sont illustrées sur la figure 10.11. Les
données du réseau INTERMAGNET sont fournies dans ce repère NED. Les éléments
magnétiques dérivés sont la déclinaison D, qui est l’angle entre le Nord géographique et
le Nord magnétique, l’inclinaison I, qui est l’angle entre le plan horizontal local et le
vecteur champ, et les intensités du champ totale et horizontale, F et H. L’expression de
ces quantités et leur visualisation sont présentées dans la figure 10.11.

Jusqu’à présent, nous avons utilisé des expressions telles que polaire, latitudes moyennes
et équatoriale pour désigner certaines régions latitudinales de la Terre. Comme l’axe du
dipôle magnétique est incliné d’environ 11◦ par rapport à l’axe de rotation de la Terre, ces
régions ne coïncident pas dans les repères magnétique et géographique. Pour décrire les
phénomènes qui dépendent du champ magnétique, il est plus pratique de choisir un repère
de référence magnétique plutôt que géographique. Un tel système de coordonnées dépend
du champ magnétique généré en interne par la Terre, ce qui implique que ses coordonnées
magnétiques changent en même temps que la variation séculaire. En première approxi-
mation, le champ magnétique peut être décrit par un dipôle incliné par rapport à l’axe

1https://intermagnet.github.io, consulté le 2023-07

https://intermagnet.github.io
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Figure 10.11: Système de coordonnées locales NED avec les éléments magnétiques X, Y, Z
et définition des éléments dérivés déclinaison D, inclinaison I, intensité du champ F et
intensité horizontale H. (Tiré de Olsen (2016))

Figure 10.12: Coordonnées dans le repère du dipôle excentré projetées sur la carte de la
surface géographique de la Terre. (Tiré de Laundal and Richmond (2016))

de rotation de 11◦ et qui prend naissance au centre de la Terre en utilisant le système de
coordonnées du dipôle centré (CD). Pour une description plus précise, le système de co-
ordonnées ED (Eccentric Dipole) est basé sur la représentation d’un dipôle dont l’origine
est décalée par rapport au centre de la Terre. Son axe cartésien z est aligné sur l’axe du
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dipôle, positivement vers le Nord, et est décalé d’environ 500 km du centre de la Terre,
d’où le nom dipôle excentré. Son axe y est perpendiculaire au plan contenant l’axe du
dipôle et l’axe de rotation de la Terre. L’axe x complète le trièdre. Les coordonnées du
dipôle excentré peuvent être exprimées en coordonnées sphériques (r, θ, ϕ) avec r corre-
spondant au rayon de la Terre, θ à la latitude magnétique et ϕ à la longitude magnétique.
La figure 10.12 illustre la manière dont ce système de coordonnées magnétiques se place
à la surface géographique de la Terre. Pour les phénomènes plus éloignés de la Terre, le
champ géomagnétique lui-même en tant que repère de référence peut ne plus être idéal.
Le système de coordonnées géocentriques de la magnétosphère solaire (GSM) est parti-
culièrement pratique pour l’observation du vent solaire. Son axe x pointe du centre de
la Terre (qui est aussi son origine) vers le Soleil. L’axe y est perpendiculaire à l’axe du
dipôle magnétique et à la ligne Terre-Soleil. L’axe z complète le trièdre. L’angle µ, parfois
appelé angle d’inclinaison du dipôle, est l’angle entre l’axe du dipôle géomagnétique et
l’axe z dans le repère géocentrique de la magnétosphère solaire (GSM). Cet angle varie
en fonction de l’heure de la journée (en raison de l’inclinaison de l’axe du dipôle) et de la
saison (en raison de l’inclinaison du plan équatorial de la Terre). Dans l’hémisphère nord,
µ a son maximum au solstice d’été et son minimum au solstice d’hiver, et inversement
dans l’hémisphère sud. Aux équinoxes, il est égal à zéro (Cnossen et al., 2012). Dans
ce qui suit, le tilt fait référence à l’angle d’inclinaison variable du dipôle µ (à ne pas
confondre avec l’inclinaison entre l’axe du dipôle et l’axe de rotation de la Terre avec ses
11◦, qui ne varie qu’à l’échelle des temps géologiques). Une autre grandeur pratique est
la longitude solaire L qui décrit la position de la Terre autour du Soleil et fournit des
informations sur la saison. Elle est définie comme étant 0◦ à l’équinoxe de printemps, et
donc 90◦ au solstice d’été, 180◦ à l’équinoxe d’automne et 270◦ au solstice d’hiver. Pour
les phénomènes induits par l’illumination solaire directe, on peut utiliser l’angle zénithal
χ qui est de 90◦ lorsque le Soleil est directement au-dessus de l’endroit considéré. L’heure
locale magnétique (MLT) combine les informations relatives à la longitude magnétique et
à la position solaire. Le méridien magnétique minuit est défini comme le méridien situé
à 180◦ de longitude magnétique du point subsolaire. Une heure, où 1 h correspond à 15◦

de longitude magnétique, est positive vers l’est magnétique. Le système MLT/latitude
magnétique tourne par rapport à la Terre à la vitesse à laquelle le point subsolaire traverse
les méridiens magnétiques.



Indices d’activité géomagnétique

L’identification et la quantification des signatures de orages dues au forçage solaire est
un sujet important dans le domaine de la météorologie de l’espace. Il est reconnu depuis
longtemps que les signatures des orages sont clairement présentes dans les mesures du
champ géomagnétique et peuvent donc être utilisées pour caractériser les perturbations
qui en résultent. Les indices géomagnétiques ou indices d’activité magnétique basés sur les
mesures du champ magnétique sont des mesures toutes désignées pour quantifier l’activité
magnétique. Les indices sont traditionnellement dérivés de données provenant d’un réseau
d’observatoires terrestres stables et représentent généralement des sources de perturbation
externes du champ géomagnétique. La stratégie commune de dérivation consiste à diviser
le signal en contributions provenant de sources calmes et perturbées. Lorsque l’on observe
le champ géomagnétique au-dessus du régime de basse fréquence et en l’absence de facteurs
solaires externes puissants (voir la figure 10.10) le champ géomagnétique présente des
variations lisses au cours d’une journée, en plus d’une tendance plus longue induite par
des sources telles que le système de courants solaires calmes et la variation séculaire.
En revanche, les perturbations induisent des variations non périodiques et, dans une
certaine mesure, de plus courte durée, comme la dépression H proéminente des orages
géomagnétiques, voir la figure 10.8. La détermination des sources calmes conduit à un
signal théorique de champ magnétique calme, appelé ligne de base géomagnétique. Cette
ligne de base est ensuite soustraite du signal magnétique enregistré, laissant l’information
sur les perturbations dans le résidu.

L’un des premiers indices dérivés de cette manière est l’indice K introduit par Bartels
en 1939. À cette époque, des observateurs qualifiés identifiaient les lignes de base sur des
magnétogrammes imprimés sur papier. L’idée générale de ces indices a perduré jusqu’à
aujourd’hui. Cependant, depuis cette première tentative, des améliorations significatives
ont été apportées à notre compréhension du champ géomagnétique et des effets associés à
la météorologie de l’espace. En particulier, au cours des dernières décennies, l’entrée dans
l’ère numérique a facilité l’accès aux données sur le champ géomagnétique et la possibilité
d’utiliser des ordinateurs pour analyser et manipuler les signaux du champ géomagnétique.
Cette avancée a conduit à la définition de nouveaux indices qui jouent un rôle crucial dans
la description des relations Soleil-Terre et agissent comme un important proxy pour les
modèles et les prévisions de météorologie de l’espace (Liemohn et al., 2018). Des efforts
considérables ont été déployés pour créer et dériver des indices magnétiques dans le but
d’améliorer notre compréhension des impacts solaires sur le champ géomagnétique. Alors
que certains indices sont créés dans le but d’évaluer l’état global du champ géomagnétique,
d’autres sont dédiés à la quantification de phénomènes physiques spécifiques tels que les
systèmes de courant et les processus associés à certaines régions. De nos jours, les indices
magnétiques sont largement utilisés et un aspect important de la météorologie de l’espace
concerne la prévision de ces indices. Le Service International des Indices Magnétiques
(ISGI), en tant que service de IAGA, a pour mission de valider les indices géomagnétiques
qui répondent à certaines normes de qualité et d’en permettre l’accès. Étant donné
que la dérivation des indices magnétiques peut prendre beaucoup de temps et afin de
fournir des valeurs le plus rapidement possible, ils peuvent être marqués comme quick-
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look ou provisoires. Cela indique que la valeur de l’indice n’est pas finale et peut différer
de sa valeur dite définitive. Les paragraphes suivants donnent des exemples d’indices
géomagnétiques bien établis et largement utilisés, ainsi que leurs méthodes de calcul. Des
discussions approfondies sur les indices géomagnétiques sont disponibles dans Menvielle
et al. (2011). Comme on le verra, la détermination de la ligne de base est un élément
important, car elle définit les contributions des sources contenues dans un indice. Des
méthodes de dérivation de la ligne de base pour certains indices sont présentées, ainsi que
d’autres méthodologies permettant d’extraire les variations calmes des mesures du champ
géomagnétique. La dernière partie de ce chapitre porte sur les limites et les possibilités
d’amélioration des lignes de base géomagnétiques existantes et motive le présent travail.

Exemples

Comme nous l’avons déjà mentionné, l’un des tout premiers indices introduits est l’indice
K. Plusieurs indices planétaires destinés à décrire l’état général du champ géomagnétique
sont basés sur ces premières versions et sont encore utilisés de nos jours. Nous com-
mençons par l’introduction de ces indices et poursuivons avec ceux qui ont été proposés
plus récemment et qui ont évolué en raison de notre meilleure compréhension du champ
géomagnétique et de la disponibilité des données.

Indices K et indices dérivés de K

Les indices K ont été introduits par Bartels et al. (1939) dans le but de quantifier les
variations irrégulières dans les mesures du champ géomagnétique. En général, ils sont cal-
culés et fournis par les observatoires magnétiques eux-mêmes, conformément aux normes
recommandées par l’IAGA. Pour leur dérivation, les variations irrégulières pour chacune
des deux composantes horizontales X et Y du champ géomagnétique sont déterminées.
Pour ce faire, on élimine des mesures les variations dites "non-K". Les variations non-K
sont définies comme comprenant toutes les contributions de sources calmes du champ géo-
magnétique. Pour chaque intervalle de 3 heures UT, 0-3 UT, 3-6 UT, etc., et pour chacune
des deux composantes X, Y , la différence maximale des variations irrégulières déterminées
est calculée. A partir de ces deux valeurs, le maximum est utilisé pour quantifier le niveau
d’irrégularité en chiffres de 0 à 9. Un niveau de 0 correspond à un état très calme du
champ géomagnétique, tandis que 9 indique un état extrêmement perturbé. La correspon-
dance entre la valeur maximale en nanotesla et la classe 0-9 a été fixée pour l’observatoire
de Niemegk (NGK) dans une échelle non linéaire, voir le tableau 3.1. Comme les ampli-
tudes des perturbations magnétiques dépendent fortement de l’emplacement à la surface
du globe, cette échelle ne peut pas être appliquée directement à d’autres observatoires, en
supposant que la même perturbation produit la même classe dans chaque observatoire.
C’est pourquoi des grilles sont utilisées pour définir la proportionnalité appropriée par
observatoire. Ces grilles dépendent de ce que l’on appelle le K9 lower limit (K9LL) qui
est déterminé pour chaque observatoire par l’ISGI (Mayaud, 1968). Ainsi, les indices
K locaux sont utilisés pour définir des indices plus globaux, appelés indices géomagné-
tiques dérivés de K. Ceci est nécessaire pour garantir la comparabilité des indices K entre
stations.
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Kp Index

L’un des indices les plus utilisés est l’indice Kp (K-planétaire). L’idée de l’indice Kp
est de quantifier l’activité à l’échelle planétaire globale du champ géomagnétique et a
été introduite par Bartels en 1949. Il est dérivé d’indices K standardisés, les indices Ks,
provenant de 13 observatoires géomagnétiques. Le processus de normalisation est néces-
saire pour éliminer les artefacts saisonniers et temporels locaux des indices K pour lesquels
des tables de conversion empiriques et complexes sont utilisées (Bartels, 1957a, 1957b).
Le Kp lui-même est défini comme la moyenne simple des indices K des 13 stations et, en
tant que tel, a une résolution temporelle de 3 heures et une échelle de 0 à 9. Les classes
et donc l’indice Kp ne sont pas linéaires, bien que la linéarité soit une caractéristique
souhaitable pour les indices en général. C’est pourquoi l’indice ap a été introduit en
unités ap, 1 unité ap correspondant à environ 2 nT (Bartels & Veldkamp, 1954). L’indice
Kp est utilisé dans de nombreux modèles de météorologie de l’espace et est populaire
auprès du grand public, où il est utilisé pour les prévisions d’aurores. Il est généralement
admis qu’un Kp inférieur à 2 est considéré comme une activité géomagnétique faible à
calme, tandis qu’un Kp supérieur à 7 est considéré comme une activité très forte. Il con-
vient de souligner ici que les observatoires utilisés pour le Kp sont situés à des latitudes
moyennes et sont fortement pondérés vers l’Europe, voir la figure 3.4 dans le panneau
supérieur gauche. Par conséquent, les indices Kp constituent une approximation plus
appropriée pour ces régions. Ł’indice Kp est un indice historique approuvé par l’IAGA,
voir Matzka et al. (2021) pour un examen récent. Depuis le début, la série temporelle Kp
est dérivée par l’institut allemand en charge de l’observatoire de Niemegk, aujourd’hui le
GeoForschungsZentrum (GFZ) Potsdam qui est aussi l’institut collaborateur de l’ISGI.
L’ensemble des données est disponible sur doi.org/10.5880/Kp.0001.

Classification des jours perturbés et calmes D- et Q-days

Johnston (1943) a introduit les jours les plus calmes et les plus perturbés par mois sur
la base de l’indice Kp. Chaque jour d’un mois se voit attribuer un nombre dérivé de la
moyenne de :

1. la somme des huit valeurs Kp
2. la somme des carrés des huit valeurs Kp
3. le maximum des huit valeurs Kp

Cela permet de classer les jours : les dix jours Q les plus calmes sont ceux qui présentent
les valeurs les plus faibles et les cinq jours D les plus perturbés sont ceux qui présentent
les valeurs les plus élevées. Le principal problème de cette définition est que les jours Q et
D sont définis de manière relative pour chaque mois. Cela signifie qu’au cours d’un mois
très perturbé, même les jours calmes peuvent être perturbés et vice-versa pour les mois
très calmes.

aa Index

L’indice aa a été introduit pour fournir des moyens simples de surveiller et de déterminer
l’activité géomagnétique mondiale depuis 1868 (Mayaud, 1972). Il est produit à partir des
indices K de deux observatoires magnétiques antipodaux en Angleterre et en Australie,
voir Mayaud, Menvielle, and Chambodut (2023) pour un aperçu des anciens observatoires
et la figure 3.4 au milieu du panneau de gauche pour les observatoires actuels. Les indices

doi.org/10.5880/Kp.0001
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K sont reconvertis en amplitudes en nanotesla et normalisés pour représenter l’activité à
une latitude magnétique de 50◦ en utilisant les amplitudes de classe moyenne de la grille
de Niemegk. Cet indice est une mesure approximative de l’activité géomagnétique avec
une série homogénéisée sur le long terme. Il est officiellement approuvé par l’IAGA et
dérivé par l’EOST. L’ensemble des données est disponible sur doi:10.25577/9z05-v751.

Classification des jours vraiment calmes

Les jours très calmes et calmes sur 24 heures et 48 heures (jours CK24 et CK48) ont été
introduits par Mayaud (1972) pour indiquer les périodes magnétiquement très calmes.
Elles sont basées sur 1) la moyenne des valeurs de l’indice aa et 2) la somme p qui est
la somme transformée et pondérée des valeurs aa, centrée sur le jour UT. La clé de la
somme p est indiquée dans le tableau 3.2.

La classification en jours ’C’ et ’K’ est la suivante :
• CK24: jours les plus calmes sur 24 heures avec moyenne(aa) < 13 nT

– ’C’ indique un jour C très calme avec Sum(p) < 4
– ’K’ indique un jour K calme avec Sum(p) >= 4

• CK48: jours les plus calmes sur 48 heures avec moyenne(aa) < 13 nT
– ’C’ indique un jour C très calme avec Sum(p) < 6
– ’K’ indique un jour K calme avec Sum(p) >= 6

Le nombre de jours CK24 et CK48 par an est représenté sur la figure 3.1 et n’est pas
réparti uniformément car il suit l’activité solaire. Il est à noter que la période commence
dès 1868, en raison de la disponibilité à long terme de l’indice aa.

Indices du courant annulaire
L’indice de perturbation (Dst) a été introduit par Sugiura (1964) pour surveiller la partie à
symétrie axiale du courant annulaire qui induit la dépression de la composante magnétique
horizontale du champ magnétique. Il est approuvé par le IAGA et est dérivé des quatre
observatoires de la figure 10.8 qui sont suffisamment éloignés des zones EEJ et aurorales,
voir la figure 3.4 au milieu du panneau de droite. L’ensemble des données est disponible sur
dx.doi.org/10.17593/14515-74000. Sa dérivation de base prend en compte le champ
principal et les variations du système de courant solaire calme dérivés pendant les cinq
jours les plus calmes du mois, les Q-days. Cependant, avec sa résolution temporelle
d’une heure, il ne permet pas d’étudier les phénomènes à plus courte durée de vie et
les caractéristiques connexes. L’indice SYM-H provisoire avec une résolution temporelle
d’une minute est basé sur 6 observatoires, voir la figure 3.4 en bas à droite, avec l’idée
de fournir une meilleure description de la partie symétrique du courant annulaire. De la
même façon, l’ASY-H est proposé pour suivre la partie asymétrique du courant annulaire.
Leur dérivation est décrite dans Iyemori (1990) et dans le rapport technique Iyemori et al.
(2010). La ligne de base comprend le champ principal et le champ Sq, comme pour l’indice
Dst. Le SYM-H est communément accepté et utilisé comme indice Dst à haute résolution
temporelle. Naturellement, certaines différences apparaissent et doivent être gardées à
l’esprit, en particulier pour les perturbations les plus fortes (Wanliss & Showalter, 2006).
Pour les deux indices, il n’est pas exclu qu’ils contiennent des contributions d’autres
systèmes de courant. Comme ils sont moyennés en longitude, ils ne donnent pas non
plus d’informations sur les variations locales. Lorsqu’il est utilisé comme indicateur de

doi:10.25577/9z05-v751
dx.doi.org/10.17593/14515-74000
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l’énergie des courants annulaires symétriques, le SYM-H surestime l’apport d’énergie d’un
facteur pouvant aller jusqu’à 4 et décale le contenu énergétique maximal de 3 à 9 heures
en raison des contributions incluses des courants de queue et de l’activité des sous-orages
(Sandhu et al., 2021). Compte tenu de leur importance dans la caractérisation de l’activité
des orages, la littérature montre un intérêt croissant pour la prévision des indices Dst et
SYM-H, y compris avec des méthodes d’intelligence artificielle, voir par exemple Ji et al.
(2012); Lu et al. (2016); Bhaskar and Vichare (2019); Laperre et al. (2020); Siciliano et
al. (2021).

Lignes de base géomagnétiques
Qu’il s’agisse de suivre l’intensité d’un système de courant spécifique ou de décrire l’état
général du champ géomagnétique, tous les indices ont en commun de caractériser les
variations irrégulières correspondantes dans les mesures du champ. Pour ce faire, la
contribution de la source d’intérêt doit être isolée dans le signal du champ géomagnétique.
En général, on y parvient en supprimant la ligne de base géomagnétique. Cette ligne de
base est censée contenir toutes les contributions des sources de champ magnétique stables
et calmes et aucune contribution de la source d’intérêt. Ainsi, après suppression, les
résidus contiennent uniquement des informations sur la source d’intérêt, par exemple les
perturbations. En 1939, Bartels (1939) désignait cette séparation des sources sous le nom
de variations K, qui contiennent les sources calmes, et de variations non-K, qui contiennent
les contributions des sources perturbatrices - ou irrégulières. Bartels et al. (1939) définit
la ligne de base géomagnétique comme suit, traduit en français :

”... une courbe lisse (une variation quotidienne régulière) à laquelle on peut s’attendre
pour cet élément lors d’une journée magnétiquement calme, en fonction de la saison, du

cycle des taches solaires et, dans certains cas, de la phase de la Lune”.

Elle est supposée englober la variation journalière solaire, la variation journalière lunaire
et les conséquence de perturbations telles que les phases de rétablissement du courant
annulaire. À l’époque, des observateurs qualifiés identifiaient à la main ces courbes
calmes sur les magnétogrammes analogiques. Cette définition plutôt subjective a ensuite
été concrétisée par un ensemble de 7 règles pratiques par Mayaud (1980) pour soutenir
l’objectivité de la détermination de la ligne de base. L’identification des systèmes de
courants calmes solaires pour les observatoires à latitude moyenne a été explicitement
incluse dans ces règles. Grâce à l’ère spatiale, notre compréhension de l’environnement
proche de la Terre et des systèmes de courants associés, ainsi que de leur couplage avec le
vent solaire, nous a permis de mieux comprendre les sources contribuant au champ géo-
magnétique. Aujourd’hui, il est communément admis qu’une ligne de base géomagnétique
comprend les variations séculaires, les variations induites par les cycles solaires et les vari-
ations solaires calmes. Cependant, à ce jour, il n’existe pas de vérité unique sur la forme
des lignes de base géomagnétiques et les lignes directrices générales du passé sont encore
largement utilisées pour justifier les dérivations des lignes de base actuelles. Comme nous
l’avons brièvement indiqué, chacune des familles d’indices introduites utilise une méthode
différente pour la détermination de la ligne de base. Cela implique également que chaque
méthode produira des lignes de base différentes, ce qui entraînera des différences dans la
dérivation des perturbations (c’est-à-dire les résidus après suppression de la ligne de base
spécifique). En fin de compte, il en résulte des différences dans la classification réelle des
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perturbations, qui doivent être prises en compte lors de l’utilisation des indices. Quelques
méthodes de référence fréquemment utilisées sont présentées ci-après.

Dérivation numérique de la ligne de base des indices K
Depuis leur introduction en 1939, les indices K constituent toujours la base de la pro-
duction d’indices géomagnétiques dérivés K largement utilisés pour les latitudes basses
et moyennes. Avec la numérisation croissante, le besoin d’une production plus rapide et
assistée par ordinateur des indices K s’est fait sentir et, en réponse directe, une variété
d’algorithmes a été introduite. En 1991, lors de la réunion de l’Union Géodésique et
Géophysique Internationale (UGGI) à Vienne, les algorithmes disponibles ont été systé-
matiquement étudiés du point de vue de leur précision dans la production des indices K
et des lignes de base correspondantes (Menvielle et al., 1995). L’algorithme de Sucksdorff
et al. (1991), appelé méthode FMI (abréviation de Finnish Meteorological Institute), a
donné des résultats suffisamment bons pour que l’on puisse dériver des indices K numérisés
2. La ligne de base selon la méthode IGF est basée sur une régression sur une fenêtre
glissante centrée sur le jour UT de 24 heures. Pour chaque heure UT avec l’heure de
début t0 et l’heure de fin t1, la moyenne sur l’intervalle (t0 − m, t1 + n) est calculée, avec
m et n étant des minutes. Les 24 valeurs résultantes (une par heure) sont ajustées par
une courbe harmonique de 5ème ordre qui est la ligne de base.

m est un nombre fixe de minutes, qui dépend de l’heure locale (LT) : de 0 à 3 LT
m = 90min, de 3 à 6 LT m = 60min, de 6 à 18 LT m = 0min, de 18 à 21 m = 60min et
de 21 à 0LT m = 90min. n est calculé en deux étapes :

1. Étape 1 : pour chaque intervalle UT de 3 heures (0-3UT, 3-6UT, etc.), le maximum
et le minimum des composantes horizontales sont utilisés pour obtenir une valeur K
initiale Kinit. Avec ninit = K3.3

init, les valeurs horaires moyennes pour les intervalles
(t0 − m, t1 + ninit) sont ajustées avec une harmonique de 5ème ordre qui donne la
ligne de base préliminaire.

2. Étape 2 : la ligne de base préliminaire est ensuite retirée des mesures. Par intervalle
de 3 heures, le maximum et le minimum des résidus sont utilisés pour déterminer
l’indice K préliminaire Kprelim. La valeur finale n utilisée pour la longueur réelle de
l’intervalle de dérivation de la ligne de base K est définie comme n = K3,3

prelim.

Pour mettre en œuvre cette méthode, il faut disposer des mesures de l’ensemble de la
journée UT. Pour chaque bloc de 3 heures (00:00-03:00, 03:00-06:00, etc.), la variation
entre le maximum et le minimum des deux valeurs horizontales du champ B est comparée
au tableau suivant pour obtenir un indice K initial n. Pour chaque heure de la journée, les
valeurs horizontales moyennes pour cette heure +/- (n + m) minutes sont calculées, où n
est l’indice K initial, et m une constante qui dépend de l’heure de la journée. Ensemble,
ces points donnent une estimation approximative de la variation du courant calme solaire.
Cette estimation approximative de la variation du courant calme solaire est ensuite lissée,
puis retirée des données brutes. Les étapes 3 à 5 sont ensuite répétées en utilisant l’indice
K secondaire pour calculer le troisième et dernier indice K. Ce dernier indice K est celui
qui est utilisé pour calculer les données finales et qui est affiché sur la page web à l’adresse
suivante : https://www.magie.ie/fmi-method/.

2Le script informatique en C est disponible à l’adresse
https://space.fmi.fi/MAGN/K-index/FMI_method/K_index.h

https://www.magie.ie/fmi-method/
https://space.fmi.fi/MAGN/K-index/FMI_method/K_index.h
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Dérivation de la ligne de base de l’indice Dst
La ligne de base de l’indice Dst final est dérivée de la composante H de quatre observatoires
de basse latitude qui sont suffisamment éloignés des électrojets auroraux et équatoriaux
pour minimiser leur influence. La dérivation est détaillée dans Sugiura, M., et T. Kamei
(1991). Elle tient compte de la variation séculaire Hsecular et de la variation de l’indice
Sq Hsq. Les deux valeurs sont basées sur les variations correspondantes des cinq jours les
plus calmes de chaque mois, les Q-days.

Hsecular est estimé par ajustement des moindres carrés des valeurs moyennes annuelles
de tous les jours Q, pendant l’époque τ qui comprend également les quatre dernières
années comme suit :

Hsecular(τ) = A + Bτ + Cτ 2 . (10.4)

Pour chaque mois, une moyenne Sq est calculée sur la base des 5 jours Q par mois. Pour
une année, cet ensemble de 12 moyennes Sq est développé dans une double série de Fourier
en tenant compte de l’heure locale LT et du mois M, comme suit :

Hsq(LT, M) =
∑

j

∑
k

Ajk cos (jLT + αj) cos (kM + βk) . (10.5)

Par conséquent, pour calculer l’indice Dst final au pas de temps t, les mesures des 4
années précédentes t doivent être disponibles. Cela entraîne des retards importants dans
la production des Dst. Le Centre Mondial de Données pour le Géomagnétisme de Kyoto
fournit des valeurs Dst provisoires et en temps réel (quicklook). Il faut garder à l’esprit
que ces valeurs sont dérivées de données brutes non vérifiées et qu’elles peuvent donc
contenir des inexactitudes.

Détermination de la ligne de base pour les indices PC
Janzhura and Troshichev (2008) a introduit une méthode automatique pour la détermina-
tion de la ligne de base pour les deux stations de la calotte polaire utilisées pour les indices
PC. Ils utilisent les données des jours calmes pour générer une variation statistique des
jours calmes Hq qui est basée sur une fenêtre de 30 jours. Par heure UT, 120 échantillons
de minutes calmes sont identifiés à partir de la fenêtre courante et la moyenne de ces
minutes représente Hq. Les échantillons calmes sont déterminés par deux critères :

1. dB/dt < γ pour chaque intervalle de 20 minutes

2. |B(dt) − B(dt)| < β pour la moyenne des 20 minutes B(dt) et la moyenne des
intervalles de 20 minutes B(dt) au cours des 3 heures précédentes.

La détermination des seuils γ et β dépend du nombre de points disponibles pour déter-
miner Hq. En commençant par γ = 2 nT/min et β = 2 nT, γ et β sont augmentés de
manière itérative jusqu’à ce que 120 échantillons calmes soient trouvés. La moyenne finale
est pondérée en fonction du nombre d’itérations nécessaires pour atteindre le seuil de 120
échantillons. Cette moyenne est utilisée comme référence pour les jours à partir desquels
elle est générée. Pour les autres jours, donc perturbés, la ligne de base des jours calmes
identifiés est interpolée. Cette approche permet de projeter la ligne de base jusqu’à 20
jours à l’avance en extrapolant Hq en amplitude. La phase est considérée comme con-
stante, car aucun changement de phase important n’a été constaté dans leurs observations.
Par conséquent, la méthode PC peut être utilisée comme méthode courante pour fournir
des lignes de base en temps quasi-réel pour les deux stations de la calotte polaire.
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Méthode IMAGE

Van De Kamp (2013) a introduit une dérivation de la ligne de base pour les observatoires
qui font partie de l’International Monitor for Auroral Geomagnetic Effects (IMAGE) en
Scandinavie dans le but d’étudier les courants ionosphériques des hautes latitudes, en
particulier les électrojets auroraux. Le réseau comprend un total de 32 magnétomètres
dont les latitudes géographiques s’étendent de 58◦ à 79◦ et qui fournissent des données
avec une résolution de 10 secondes. Cette base ne comprend pas seulement la tendance
à long terme et les variations diurnes, mais aussi les discontinuités dans les mesures des
magnétomètres. Lorsque les données magnétométriques ne proviennent pas d’instruments
stables et bien contrôlés, des discontinuités artificielles occasionnelles peuvent se produire
et affecter la ligne de base. Dans la première étape de la méthode IMAGE, les sauts
identifiés automatiquement sont examinés et supprimés manuellement en conséquence.
La tendance à long terme et les variations quotidiennes sont basées sur les jours calmes
et perturbés identifiés. La première étape de la méthode IMAGE consiste à surmonter ce
problème en présentant à l’utilisateur une liste de sauts potentiels et en lui permettant
de décider si un saut est artificiel. La ligne de base des sauts ainsi générée est ensuite
soustraite des données du magnétomètre. Pour identifier les jours calmes, chaque heure
UT est ajustée par une ligne droite qui est retirée des mesures. L’écart-type σ est calculé
à partir de ces résidus. Le maximum σmax de tous les σ horaires est utilisé pour décrire le
niveau de perturbation pour le jour UT correspondant. Le jour où le σmax est le plus petit
est considéré comme le jour le plus calme du mois. Pour garantir un calme réel, le σmax le
plus petit doit en outre être inférieur à un seuil identifié de manière empirique. Le seuil
optimal est dérivé par inspection visuelle de la station Abisko (ABK), près de Kiruna en
Suède, puis ajusté empiriquement pour d’autres stations par rapport à ABK. La ligne
de base diurne pour un jour calme est constituée des 7 harmoniques les plus basses de
la transformée de Fourier rapide (FFT) appliquée aux données du jour calme. Pour les
jours non calmes, les courbes des jours calmes adjacents sont interpolées. Cette méthode
peut également être appliquée lorsqu’il n’y a pas de jour calme au cours d’un mois ou
pour des périodes plus longues. La ligne de base à long terme est la simple médiane du
jour UT si le jour n’est pas perturbé. La catégorisation des jours perturbés se fait de
manière analogue à la détermination des jours calmes : σmax doit être supérieur à un
seuil empirique. Dans ce cas, la tendance à long terme pour le jour UT est interpolée à
partir des jours adjacents non perturbés. Les écarts types horaires déterminent également
si les variations à long terme déterminées peuvent être utilisées ou si elles doivent être
interpolées. Les variations calmes sont déterminées en utilisant les 7 harmoniques les
plus basses extraites avec la FFT sur les jours calmes et sont interpolées pour générer
la ligne de base diurne. La ligne de base complète est alors la superposition des lignes
de base à long terme et diurne. La ligne de base est dérivée pour chaque station et
chaque composante séparément, et donc chacune des étapes manuelles énumérées ci-dessus
(vérification des sauts, détermination des seuils) doit être effectuée pour chaque station
et chaque composante. La détermination de la ligne de base prend donc beaucoup de
temps et n’est applicable que pour l’intervalle de temps considéré. Elle n’est donc pas
applicable aux applications en temps réel. Cependant, en supprimant le saut de ligne
de base, la méthode IMAGE permet d’accéder à des données provenant d’équipements
éloignés et donc plus difficiles à entretenir, ce qui est une situation courante aux latitudes
aurorales. Cela permet d’améliorer la distribution spatiale des mesures pour les études
de météorologie de l’espace.
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Méthode SuperMAG
Gjerloev (2012) a présenté une méthode de dérivation de la ligne de base utilisée pour les
indices SuperMAG. La toute première étape de cette méthode consiste à faire pivoter les
mesures du magnétomètre dans un système de coordonnées magnétiques local spécifique.
L’angle de rotation est déterminé par un angle de déclinaison arbitrairement défini en
fonction du temps et basé sur les composantes horizontales du champ, lissées sur 17
jours. La méthode définit une valeur typique comme le mode, c’est-à-dire la valeur la plus
fréquente, sur une certaine période de temps.

La tendance à long terme et les variations diurnes sont incluses dans la ligne de base.
Pour les variations diurnes, le mode (c’est-à-dire la valeur ayant le taux d’occurrence le
plus élevé) pour chaque jour est retiré des mesures. Pour chaque intervalle de 30 minutes,
le mode des résidus du jour en question, ainsi que des jours précédents et suivants, est
déterminé. Le nombre de jours entourant le jour en question dépend des fluctuations
des composantes X, Y , Z et de la latitude magnétique du magnétomètre utilisé. Une
méthode d’interpolation par convolution cubique est appliquée aux valeurs pondérées du
mode semi-horaire pour obtenir les variations diurnes. Les poids dépendent du nombre
de jours utilisés. Pour la tendance annuelle, le mode des 17 derniers jours est généré
pour chaque jour. Une procédure de lissage pondéré est ensuite appliquée à la série
de modes pour déterminer la tendance à long terme. La procédure de lissage pondéré
dépend des fluctuations des mesures instantanées et des huit jours précédents et diffère
pour chacune des composantes. Enfin, à partir des résidus (différence entre les mesures
et les variations diurnes et la tendance annuelle), un offset spécifique à la station est
déterminé. Ce décalage est dérivé comme le mode des résidus pendant les jours Q et
montre des dépendances claires avec la latitude magnétique.

La ligne de base finale de SuperMAG est composée des variations diurnes, de la
tendance annuelle et du décalage résiduel. Pour la méthode SuperMAG, aucune étape
manuelle n’est nécessaire. Cependant, comme elle nécessite des informations sur les jours
environnants, elle ne peut pas être appliquée en temps réel, et on ne sait pas non plus
combien de jours suivants sont nécessaires pour produire le mode pour l’intervalle de 30
minutes. En outre, la connaissance des coordonnées magnétiques des mesures est une
condition préalable.

Motivation pour cette Thèse
Chacune des méthodes de base présentées ci-dessus est activement utilisée et présente
ses propres avantages et inconvénients. Compte tenu de la définition assez floue de ce
qu’est une ligne de base géomagnétique, il n’est pas trivial de quantifier les différentes
lignes de base et de dire si l’une est plus correcte que l’autre. L’une des justifications
d’une ligne de base est donnée par Van De Kamp (2013) qui compare la méthode IMAGE
à la méthode SuperMAG et soutient que les deux sont très similaires et peuvent donc
être employées l’une et l’autre. Le consensus commun qui semble s’être établi au cours
des dernières années est cependant qu’une ligne de base est constituée des sources calmes
qui constituent la tendance à long terme et de certaines variations diurnes typiques.
Cette approche est explicitement suivie par les méthodes Dst, IMAGE et SuperMAG.
Bien que chacune d’entre elles motive sa propre méthode de dérivation pour contenir
les sources calmes, les études détaillées des sources réellement contenues sont largement
absentes. Gjerloev (2012) et Van De Kamp (2013) montrent les spectres de la ligne de



222 INTRODUCTION (FR)

base et soutiennent que les harmoniques de 24 heures sont suffisamment représentées et
incluent donc les variations calmes diurnes. De nombreuses méthodes utilisent en fait
une sorte de moyenne statistique pour décrire les variations calmes. Dans le cas des
méthodes appliquées aux latitudes moyennes, cela conduit à une moyenne des empreintes
du courant Sq, en négligeant totalement sa variabilité D2D intrinsèque. Un défi commun à
toutes les méthodes est l’identification des mesures des variations calmes qui sont utilisées
comme approximations de la ligne de base. L’utilisation des jours Q officiels dérivés
des indices K décrits dans le chapitre 3.1.1.2 ou de tout autre jour calme UT choisi
arbitrairement s’accompagne d’une série de limitations et de mises en garde qui ont été
largement discutées dans Mayaud (1980); Joselyn (1989); Menvielle et al. (1995); Janzhura
and Troshichev (2008); Gjerloev (2012); Van De Kamp (2013), par exemple. En voici
quelques-unes :

• Les perturbations peuvent être localement et temporellement confinées, de sorte
qu’elles ne sont pas prises en compte lors de l’examen de la journée UT.

• Les jours calmes qui sont basés sur des indices qui nécessitent une sorte de critère
de calme sont basés sur un raisonnement causal circulaire

• L’utilisation de la moyenne d’un nombre quelconque de jours UT calmes dans une
certaine fourchette afin de dériver des propriétés statistiques des variations calmes
est arbitraire.

Ainsi, les méthodes qui utilisent et produisent des lignes de base par jour UT, telles que
les méthodes K-, Dst et PC, peuvent ne pas être en mesure de décrire avec précision
les influences des perturbations. Ł’idée d’une dérivation informatisée des lignes de base
pour les indices K est née de la nécessité de les fournir le plus rapidement possible et de
manière automatique, sans intervention manuelle. Il est certain que pour toute application
en temps quasi-réel, cette exigence doit également être respectée. Cela implique que
l’utilisation de mesures futures ou de paramètres d’entrée supplémentaires tels que les
positions magnétiques ne peut pas être incorporée dans la dérivation de la ligne de base,
comme c’est le cas pour les méthodes K, Dst et SuperMAG. Toute intervention manuelle
nécessaire pour les étapes de dérivation de la ligne de base, comme l’élimination des
valeurs aberrantes ou la dérivation des seuils, n’est pas non plus adaptée aux applications
en temps réel. Le but ultime de ce travail est de présenter une ligne de base qui contient
les sources du champ géomagnétique calme et dont la mise en œuvre est entièrement
automatisée et peut donc être utilisée en temps quasi réel, en surmontant les lacunes
mentionnées. Pour une telle dérivation de la ligne de base, les chapitres suivants :

1. décrivent la dérivation automatique de la ligne de base pendant les périodes calmes
2. étudient et analysent les sources associées qui contribuent à la ligne de base calme
3. introduisent un algorithme pour déduire les variations calmes pendant les périodes

perturbées pour la ligne de base.
4. étudient le déploiement de l’intelligence artificielle pour la dérivation de la ligne de

base.
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Conclusion finale et perspectives pour
les travaux futurs

Au tout début de cette thèse, j’ai formulé deux questions de recherche que j’ai motivées et
auxquelles j’ai essayé de répondre tout au long de cette thèse. Dans ce qui suit, je résume
les réponses trouvées.

1. La ligne de base dérivée reflète-t-elle les variations calmes du
champ géomagnétique ?

Les indices magnétiques condensent les informations sur le champ géomagnétique en
quelques valeurs qui visent à décrire l’état complexe du système Terre sous l’effet de
la météorologie de l’espace (chapitres 2 et 3). La réaction du champ géomagnétique
aux phénomènes météorologiques spatiaux est un indicateur important de leur gravité.
Le champ géomagnétique étant une superposition de sources, les signatures des orages
doivent être extraites des autres variations calmes. Cette séparation de sources est réalisée
par des lignes de base géomagnétiques, qui décrivent les variations calmes et constituent
la base des indices magnétiques. Il existe plusieurs méthodes de lignes de base, mais elles
ne sont pas applicables aux applications en temps (quasi) réel (chapitre 3.2). En outre,
si les étapes de la dérivation de la ligne de base pour la plupart des méthodes sont bien
décrites, l’identification des sources incluses fait largement défaut.

Dans le chapitre 4, je présente une méthodologie pour extraire les variations calmes du
champ géomagnétique de manière automatique et efficace en utilisant des filtres temporels
avec des caractéristiques de fréquence appropriées. Dans le chapitre 5, les réponses des
filtres qui en résultent sont analysées en détail en ce qui concerne la contribution des
sources du champ géomagnétique et l’identification des sources calmes. Trois modèles
analytiques sont proposés pour décrire les variations observées. Grâce à des discussions
détaillées et à une analyse physique, j’ai conclu que la méthode de filtrage est appropriée
pour capturer les sources calmes du champ géomagnétique. Je me réfère à cette ligne de
base préliminaire comme la ligne de base du filtre.

À ce stade, la réponse à la première question de recherche a été présentée. L’analyse
approfondie et l’interprétation physique de la ligne de base du filtre ont montré qu’elle est
capable d’extraire et de décrire automatiquement les sources qui contribuent au champ
géomagnétique calme aux latitudes moyennes, les principales étant la variation séculaire
et les systèmes de courants solaires calmes. Un résultat important de l’analyse est que
la ligne de base du filtre est capable de capturer la variabilité journalière intrinsèque des
systèmes de courant Sq, ce qui n’est pas le cas de la majorité des méthodes de ligne de base
existantes. En outre, les modèles dérivés et l’étude de la variabilité journalière améliorent
notre compréhension de la climatologie des systèmes de courants solaires calmes.

Cependant, la ligne de base du filtre n’est que préliminaire, car les filtres temporels
contiennent des contributions de perturbations pendant les périodes non calmes, comme
indiqué au chapitre 5.3. L’utilisation directe de la ligne de base du filtre conduirait donc
à une sous-estimation des perturbations dans les résidus. Je traite cette question au
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chapitre 6. La solution comprend deux étapes : l’étape 1 identifie les périodes pendant
lesquelles une perturbation est sous-estimée et à l’étape 2, je déduis les variations calmes
possibles pendant la période de perturbation identifiée. La ligne de base initiale du filtre
est adaptée pendant les périodes de perturbation pour aboutir à la proposition de plusieurs
lignes de base finales. Dans le chapitre 6.4, je compare les résultats de la méthode de base
introduite avec ceux des méthodes existantes.

La principale conclusion que je peux tirer de ce travail est que la ligne de base introduite
peut être utilisée pour la dérivation d’indices magnétiques spécifiques, car elle décrit
de manière satisfaisante les variations du champ géomagnétique calme. En outre, la
dérivation de la ligne de base proposée ne repose pas sur d’autres paramètres d’entrée
que les mesures du champ magnétique elles-mêmes et peut donc être utilisée dans des
applications en temps quasi6réel. Néanmoins, il reste plusieurs aspects qui pourraient
être intéressants pour des travaux futurs :

1. Applications en temps réel.
La méthode de filtrage est basée sur une fenêtre centrée sur trois jours et la ligne
de base finale ne sera donc disponible qu’avec un délai d’un jour et demi. Dans un
contexte opérationnel, cela conduit à deux produits : 1) la ligne de base rapide, qui
est basée sur le filtrage des trois jours précédents ou qui prend en compte une sorte
de propagation vers l’avant des valeurs de filtrage et 2) la ligne de base finale qui
est disponible après un jour et demi. Des études quantifiant les différences entre
l’aperçu rapide et le niveau de référence final confirmeraient l’applicabilité d’une
telle approche.

2. Séparation des sources dans les mesures du champ géomagnétique.
Pour décrire et comprendre le champ géomagnétique, on utilise des modèles très
complexes qui tiennent compte d’une multitude de mesures du champ magnétique
effectuées tout autour du globe, y compris des données satellitaires. Ces modèles
sont très efficaces pour la séparation des sources et la détermination des différentes
contributions, mais ils ne peuvent pas être déployés en temps quasi-réel en raison de
leur complexité. Bien que la méthode de filtrage permette d’extraire suffisamment
bien les sources calmes, elle n’est pas en mesure d’effectuer une séparation complète
des sources. Avec la disponibilité croissante de flux de données fiables provenant de
plusieurs observatoires, il pourrait être possible d’améliorer la méthode de filtrage
avec une composante spatiale, par exemple en comparant le signal entre des stations
voisines afin d’améliorer la séparation des sources en temps quasi-réel.

3. Détection des perturbations.
La détection des perturbations introduite bénéficierait également d’une composante
spatiale. Cela permettrait d’identifier et de propager les événements perturbateurs
ou de permettre la détection d’anomalies locales. En outre, d’autres paramètres
permettraient d’identifier les périodes complètes pendant lesquelles la ligne de base
du filtre doit être remplacée, par exemple pour inclure entièrement les débuts
d’événements. En tout état de cause, la détection des perturbations introduite peut
être exploitée pour d’autres applications nécessitant l’identification automatique des
signatures des orages et des perturbations.

4. L’influence de l’atmosphère neutre.
Il est bien connu, et nous l’avons également constaté lors de l’élaboration des mod-
èles, que l’atmosphère neutre joue un rôle important dans la variabilité quotidienne
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des systèmes de courants calmes solaires, car elle influence directement la région
dynamo par le biais des marées et des vents. Plusieurs efforts de modélisation
très sophistiqués sont activement poursuivis pour décrire l’atmosphère neutre et
pour mieux comprendre la dynamo ionosphérique, ce qui permettrait de mieux
décrire les variations quotidiennes et le moteur des systèmes de courants solaires
calmes. Des paramètres supplémentaires décrivant et caractérisant les vents et les
marées dans l’atmosphère neutre peuvent également être exploités pour améliorer
la description de base et le remplacement. Une première étape utile consisterait à
étudier la densité, la température et les vents thermosphériques à l’emplacement
des observatoires magnétiques. Une telle approche peut être réalisée en équipant les
observatoires d’instruments appropriés tels que l’interféromètre de Fabry-Perot.

5. L’implication de la communauté.
Comme mentionné tout au long de cette thèse, l’identification de la ligne de base n’a
pas de vérité absolue (du moins au moment de ce travail). À l’avenir, des modèles de
champ géomagnétique sophistiqués et les progrès de la recherche liés aux relations
Soleil-Terre et aux variations du champ géomagnétique pourront aider à identifier
une ligne de base idéale. D’ici là, il est important d’impliquer la communauté, y
compris les utilisateurs intéressés par la ligne de base (et les indices dérivés) au cours
du processus de dérivation de la ligne de base. Il convient de discuter et d’introduire
ensemble des critères réalisables et mesurables pour les niveaux de référence et les
procédures connexes de test des niveaux de référence.

6. Dérivation des indices magnétiques.
Les options de base présentées peuvent être utilisées pour la dérivation des indices
géomagnétiques. Ces indices ne sont pas limités dans leur dérivation en temps
réel lorsqu’on utilise la ligne de base introduite. D’autres études devraient être
menées pour démontrer le comportement et les caractéristiques des lignes de base,
ainsi que pour décrire les sources contenues dans les observatoires géomagnétiques
supplémentaires dans différentes gammes longitudinales et latitudinales. Une telle
étude peut également aider les utilisateurs à choisir la ligne de base idéale pour
leur application spécifique et mettre en lumière les avantages et les inconvénients
qu’il faut garder à l’esprit. Ces aspects sont idéalement discutés avec la communauté
spécifique (par exemple, la modélisation du champ interne bénéficierait de propriétés
différentes de celles des prévisions de météorologie de l’espace).

2. Dans quelle mesure l’IA peut-elle contribuer à la détermina-
tion de la ligne de base par rapport aux méthodes tradition-
nelles ?

Cette thèse est principalement axée sur la détermination de la ligne de base à l’aide de
méthodes traditionnelles. Cependant, dans la deuxième partie, j’ai exploré des méthodolo-
gies d’apprentissage automatique et d’apprentissage profond bien établies pour déterminer
les variations calmes, avec un succès limité. Comme c’est souvent le cas, le réseau de neu-
rones a eu du mal à décrire les variations de la composante X, alors que la composante
Y a été assez bien décrite. Bien que limitée, la substitution de la ligne de base par le
modèle LSTM préliminaire est un début prometteur et les résultats ouvrent la voie à des
améliorations futures qui offrent une variété de possibilités :
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1. Un modèle par composante.
Comme X est beaucoup plus compliqué que Y , il convient d’utiliser un modèle par
composante, l’un plus complexe et l’autre plus simple. En outre, un modèle pour la
troisième composante Z, qui n’a pas été prise en compte dans ce travail, pourrait
permettre de cartographier les effets de l’induction.

2. Comprendre la boîte noire.
Une fois qu’un modèle approprié a été trouvé pour les perturbations au sol ou les
variations calmes, il convient de déployer des méthodologies d’importance des carac-
téristiques basées sur le type de modèle. D’autres paramètres décrivant l’atmosphère
neutre devraient être pris en compte dans ces modèles. Cela nous permettra de
mieux comprendre les principaux moteurs des résultats et donc des variations di-
urnes.

3. Détection des perturbations.
Le chapitre 6 est consacré à l’identification des intervalles de perturbation. Il serait
intéressant de savoir dans quelle mesure l’apprentissage automatique est capable
d’identifier de tels intervalles. Dans un premier temps, un modèle supervisé peut être
utilisé pour reproduire la méthodologie déployée dans cette thèse, qui peut ensuite
être améliorée. Une autre possibilité serait de déployer des méthodes non supervisées
pour lesquelles l’ordinateur dériverait ses propres classifications des perturbations.

4. Capacités actuelles et prévisionnelles.
Les résultats de cette thèse motivent la génération de lignes de base (analytiques ou
IA) pour un certain nombre d’observatoires dans un délai très court, car cela est pos-
sible dès que les mesures du champ magnétique sont disponibles. Comme un nombre
croissant d’observatoires fournit des données de haute qualité en temps quasi-réel,
la projection de l’état du champ géomagnétique devient de plus en plus possible et
précise. En ajoutant les données sur le vent solaire, des modèles d’IA sophistiqués
peuvent être dérivés et exploités pour améliorer les capacités de prévision.

Au final, cette thèse introduit une nouvelle dérivation de la ligne de base pour des
applications en temps quasi-réel dont les résultats sont largement discutés et présentés.
Pour la première fois, l’application de l’IA pour la dérivation de la ligne de base a été
déployée et a donné des résultats prometteurs. Néanmoins, cette thèse soulève plus de
questions qu’elle n’en résout. Chacune des perspectives énumérées ci-dessus mériterait à
elle seule une étude doctorale pour laquelle j’espère que le présent travail pourra être utile.
En particulier, les travaux futurs qui dérivent de nouvelles familles d’indices magnétiques
à l’aide des concepts de base introduits, constituent une partie passionnante à laquelle je
serais heureuse de contribuer. L’application de l’IA donne des résultats prometteurs et je
suis impatiente de voir d’autres applications, en particulier dans le cadre de la dérivation
de la ligne de base ou du calcul des indices magnétiques. Avec cette thèse, je suis fière
d’avoir contribué à améliorer la compréhension de la météorologie de l’espace.
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Acronyms

RE Earth-radii

AARI Arctic and Antarctic Research Institute
AI Artificial Intelligence
ANN Artificial Neural Network

CNN Convolutional Neural Network

D2D day-to-day
DL Deep Learning
DTU Space National Space Institute at the Technical Uni-

versity of Denmark

EEJ Equatorial Electrojet
EOST École et Observatoire des Sciences de la Terre
ESA European Space Agency

GIC geomagnetically induced currents
GRU Gated Recurrent Unit

IAGA International Association of Geomagnetism
and Aeronomy

ICME Interplanetary Coronal Mass Ejection
INTERMAGNET Real-time Magnetic Observatory Network
IPIM IRAP plasmasphere-ionosphere model
ISGI International Service of Geomagnetic Indices
IUGG International Union of Geodesy and Geo-

physics

K9LL K9 lower limit
KB kilobyte

LSTM Long-Short Term Memory

MAE mean absolute error
MHD Magnetohydrodynamics
ML Machine Learning
MLP Multilayer Perceptron
MSE mean square error

NN Neural Network
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RMSE Root Mean Square Error
RNN Recurrent Neural Networks

SC Solar Cycle
SEA superposed epoch analysis
Sq Solar Quiet
SSC Storm Sudden Commencement
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Appendix A

Magnetic Observatories

The magnetic data used for this thesis comes from magnetic observatories which are members
of the INTERMAGNET network during the period of 1991 to 2019. Table A.1 provides a list of
these stations with their magnetic latitude θ and longitude ϕ (in eccentric dipole coordinates,
taken at the 30th June of the first year of membership) and the years in which they delivered data
together with their geographic coordinates and the responsible institute. Figure 4.1 visualises
the geographic distribution of these magnetic observatories. Observatories in blue are located
in the northern hemisphere within the sub-auroral range of θ ∈ [20◦, 60◦], observatories in red
in the southern hemisphere within θ ∈ [−60◦, −20◦], grey corresponds to stations outside of the
studied region of low and mid-latitudes.
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Figure A.1: The same geographic map as figure 4.1 enlarged showing INTERMAGNET stations which delivered data for at least one
year between 1991 - 2019. Blue and red corresponds to stations with absolute magnetic ED latitude between 20◦ and 60◦ in the northern
(blue) and southern (red) hemispheres, respectively. Grey corresponds to stations outside of these boundaries, i.e. equatorial and polar
regions.
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Table A.1: List of magnetic observatories (OBS) from the INTERMAGNET network during 1991 - 2019, together with the geographic
latitude (LAT) and longitude (LON), the magnetic ED latitude θ and longitude ϕ (computed on the 30th June of the station’s first year
in period), the period of INTERMAGNET membership and the responsible institute. Blue and red corresponds to stations with absolute
magnetic ED latitude between 20◦ and 60◦ in the northern hemisphere (blue) and the southern hemisphere (red), while black indicates
stations outside of these boundaries, i.e. equatorial and polar regions.

OBS LAT LON θ ϕ Period Responsible Institute
AAA 43.18 76.95 34.41 147.51 2005 - 2015 Institute of the Ionosphere Republic of Kazak
AAE 9.02 38.77 4.05 106.95 1998-1999, 2001-2013 University of Addis Ababa
ABG 18.62 72.87 9.02 141.37 1997 - 2019 Indian Institute of Geomagnetism
ABK 68.36 18.82 64.38 104.35 1994 - 2018 Geological Survey of Sweden
AIA -65.25 295.73 -52.09 8.69 2004 - 2017 Lviv Centre of Institute of Space Research
ALE 82.5 297.6 86.19 82.33 1992, 1995-1997, 2002 Geological Survey of Canada
AMS -37.8 77.57 -48.22 136.78 1991-2009, 2012-2013 Ecole et Observatoire des Sciences de la Terre
API -13.81 188.23 -17.24 -93.57 1999 - 2018 Department of Agriculture, Forestry, Fisherie
AQU 42.38 13.32 39.87 89.03 2000 - 2009 Instituto Nazionale di Geofisica
ARS 56.43 58.57 49.58 132.57 2014-2015, 2018 Ural Branch Russian Academy of Sciences
ASC -8 345.6 -3.18 54.64 2003 - 2018 British Geological Survey
ASP -23.76 133.88 -36.7 -152.51 1999 - 2019 Geoscience Australia
BDV 49.08 14.02 46.28 91.68 1994 - 2018 Academy of Sciences of the Czech Republic
BEL 51.84 20.8 48.07 98.69 1993 - 2018 Polish Academy of Sciences
BFE 55.63 11.67 52.96 91.8 1991 - 2008 Danish Meteorological Institute
BFO 48.33 8.33 46.18 85.69 2006-2011, 2014-2018 Black Forest Observatory
BLC 64.3 264 71.34 -25.85 1991 - 2017 Geological Survey of Canada
BMT 40.3 116.2 30.88 -175.8 1998 - 2019 Chinese Academy of Sciences
BNG 4.33 18.57 3.1 86.97 1993-2003, 2005-2007, 2010 Institut de Physique du Globe de Paris
BOU 40.1 254.8 46.79 -34.01 1991 - 2018 United States Geological Survey
BOX 58.07 38.23 52.4 115.4 2004 - 2019 Russian Academy of Sciences
BRD 49.87 260.03 55.25 -26.43 2014 - 2018 Geological Survey of Canada
BRW 71.3 203.4 72.45 -107.27 1991 - 2019 United States Geological Survey
BSL 30.4 270.4 37.94 -16.4 1991-2005, 2007-2018 United States Geological Survey
CBB 69.1 255 75.86 -40.19 1991-2012, 2014-2017 Geological Survey of Canada
CKI -12.19 96.83 -24.39 164.93 2013 - 2018 Geoscience Australia
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OBS LAT LON θ ϕ Period Responsible Institute
CLF 48.02 2.27 46.95 80.52 1991 - 2019 Institut de Physique du Globe de Paris
CMO 64.9 212.2 67.38 -91.02 1991 - 2018 United States Geological Survey
CNB -35.32 149.36 -46.92 -131.83 1991 - 2018 Geoscience Australia
CPL 17.29 78.92 7.72 148.11 2015 - 2019 Indian Institute of Geomagnetism
CSY -66.28 110.53 -80.48 171.74 2010 - 2019 Geoscience Australia
CTA -20.09 146.26 -31.45 -138.31 2000 - 2019 Geoscience Australia
CYG 36.37 126.85 28.15 -163.78 2014 - 2017 Korean Meteorological Administration
CZT -46.43 51.86 -50.97 105.11 1991 - 2015 Ecole et Observatoire des Sciences de la Terre
DED 70.36 211.21 72.73 -91.84 2011 - 2017 United States Geological Survey
DLR 29.3 259.2 36.42 -28.26 1991 - 2008 United States Geological Survey
DLT 11.95 108.48 0.83 178.24 2012 - 2016 Vietnamese Academy of Science and Technology
DMC -75.25 124.17 -88.57 -82.04 1999-2001, 2003-2017 Ecole et Observatoire des Sciences de la Terre
DOU 50.1 4.6 48.42 82.86 2002 - 2019 Royal Meterological Institute of Belgium
DRV -66.67 140.01 -79.15 -120.7 1991 - 2013 Ecole et Observatoire des Sciences de la Terre
DUR 41.65 14.47 38.83 89.68 2016 - 2019 Instituto Nazionale di Geofisica e Vulcanolog
EBR 40.82 0.49 40.08 76.59 2002 - 2019 Observatori de l’Ebre
ESK 55.3 356.8 54.67 77.94 1991 - 2019 British Geological Survey
EYR -43.4 172.4 -50.38 -101.32 1994 - 2019 Institute of Geological and Nuclear Sciences
FCC 58.8 265.9 65.84 -22.78 1991 - 2019 Geological Survey of Canada
FRD 38.2 282.6 45.54 -3.26 1991 - 2019 United States Geological Survey
FRN 37.1 240.3 42.66 -49.51 1991 - 2018 United States Geological Survey
FUR 48.17 11.28 45.75 88.88 1995 - 2019 Ludwig Maximilians University Munich
GAN -0.69 73.15 -10.37 140.34 2012 - 2017 ETH Zürich
GCK 44.63 20.77 41.05 96.3 2005-2005, 2007-2013, 2015-2018 Geomagnetic Institute Yugoslavia
GDH 69.25 306.47 74.28 34.2 1991-2006, 2009-2018 Danish Meteorological Institute
GLN 49.6 262.9 56.53 -25.6 1992 - 1997 Geological Survey of Canada
GNA -31.78 115.95 -45.92 -174.52 1994 - 2012 Geoscience Australia
GNG -31.36 115.72 -45.1 -173.42 2012 - 2018 Geoscience Australia
GUA 13.6 144.9 4.03 -144.82 1991 - 2019 United States Geological Survey
GUI 28.32 343.56 30.77 58.03 1997 - 2017 Instituto Geografico Nacional
GZH 22.97 112.45 12.32 -178.54 2003-2006, 2008-2009 Seismologicial Bureau of Guangdong Province
HAD 51 355.5 50.74 75.09 1991 - 2019 British Geological Survey
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OBS LAT LON θ ϕ Period Responsible Institute
HBK -25.88 27.71 -26.83 89.6 1999 - 2019 National Research Foundation
HER -34.43 19.23 -32.88 79.41 1995 - 2019 National Research Foundation
HLP 54.6 18.81 51.01 97.52 1998 - 2018 Polish Academy of Sciences
HON 21.3 202 21.35 -86.82 1991 - 2018 United States Geological Survey
HRB 47.88 18.19 44.55 95.04 1997 - 2019 Slovak Academy of Sciences
HRN 77 15.37 73.12 108.92 2002 - 2018 Polish Academy of Sciences
HUA -12.05 284.67 -2.56 -1 2002 - 2017 Instituto Geofisico del Peru
HYB 17.41 78.56 7.63 147.36 2009-2012, 2014-2019 National Geophysical Research Institute
IPM -27.17 250.59 -19.32 -30.17 2010 - 2017 Institut de Physique du Globe de Paris
IQA 63.8 291.5 69.91 11.24 1996-2005, 2007-2019 Geological Survey of Canada
IRT 52.17 104.45 43.22 172.63 1998 - 2019 Russian Academy of Sciences
IZN 40.5 29.72 35.91 103.7 2007 - 2019 Bogazici University
JAI 26.9 75.8 17.76 145.49 2011 - 2016 Indian Institute of Geomagnetism
JCO 70.36 211.2 72.74 -90.68 2014 - 2019 United States Geological Survey
KAK 36.23 140.18 27.88 -152.47 1991 - 2019 Japan Meterological Agency
KDU -12.69 132.47 -25.1 -155.25 2000 - 2019 Geoscience Australia
KEP -54.28 323.51 -43.31 29.59 2013 - 2019 British Geological Survey
KHB 47.61 134.69 40.77 -157.66 2012 - 2018 Institute of Cosmophysical Researches
KIV 50.7 30.3 45.92 106.36 2009 - 2018 National Academy of Sciences of Ukraine
KMH -26.54 18.11 -25.79 81.04 2009 - 2019 National Research Foundation
KNY 31.42 130.88 22.31 -160.51 2001 - 2018 Japan Meterological Agency
KOU 5.21 307.27 13.17 20.4 1996 - 2018 Institut de Physique du Globe de Paris
LER 60.1 358.8 58.98 82.02 1991 - 2019 British Geological Survey
LNP 25 121.17 14.48 -170.13 1995, 1997-2000 Directorate General of Telecommunications
LON 45.41 16.66 42.24 92.58 2014 - 2019 University of Zagreb
LOV 59.34 17.82 55.76 98.81 1991 - 2004 Geological Survey of Sweden
LRM -22.22 114.1 -35.79 -176.21 2004 - 2019 Geoscience Australia
LVV 49.9 23.75 45.84 100.32 2004 - 2018 National Academy of Sciences of Ukraine
LYC 64.61 18.75 60.87 100.75 2008 - 2019 Geological Survey of Sweden
LZH 36.09 103.84 26.19 172.57 2001 - 2019 Lanzhou Institute of Seismology
MAB 50.3 5.7 48.43 83.81 2005 - 2019 Royal Meterological Institute of Belgium
MAW -67.6 62.88 -72 95.09 2005 - 2019 Geoscience Australia
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OBS LAT LON θ ϕ Period Responsible Institute
MBC 76.2 240.6 81.71 -73.01 1991 - 1997 Geological Survey of Canada
MBO 14.38 343.03 18.08 55.29 1993 - 2018 Institut de Physique du Globe de Paris
MCQ -54.5 158.95 -63.98 -109.86 2001 - 2019 Geoscience Australia
MEA 54.6 246.7 60.74 -45.7 1991 - 2018 Geological Survey of Canada
MGD 60.05 150.73 55.54 -145.33 2012 - 2018 Institute of Cosmophysical Researches
MID 28.21 182.7 25.37 -107.27 2000 - 2002 United States Geological Survey
MLT 30.2 31.22 25.65 103.24 2003 National Research Institute of Geophysics and
MMB 43.9 144.2 36.62 -149.61 1993 - 2019 Japan Meterological Agency
NAQ 61.18 314.57 65.68 37.63 1991-2008, 2011-2019 Danish Meteorological Institute
NCK 47.63 16.72 44.53 93.77 1993, 1995-2018 Hungarian Academy of Sciences
NEW 48.3 242.9 54.12 -48.68 1991 - 2019 United States Geological Survey
NGK 52.07 12.68 49.34 91.35 1995 - 2019 GeoForschungsZentrum Potsdam
NUR 60.51 24.66 56.07 105.26 1991 - 2017 Finnish Meteorological Institute
NVS 54.85 83.23 46.36 153.92 2003 - 2019 Russian Academy of Sciences
OTT 45.4 284.4 52.49 -0.91 1991 - 2018 Geological Survey of Canada
PAF -49.35 70.26 -57.81 123.04 1991 - 2013 Ecole et Observatoire des Sciences de la Terre
PAG 42.52 24.18 38.56 98.98 2007 - 2016 Bulgarian Academy of Science
PBQ 55.3 282.2 62.2 -2.54 1992 - 2007 Geological Survey of Canada
PEG 38.08 23.93 34.25 97.9 2012 - 2013 Institute of Geology and Mineral Exploration
PET 52.97 158.25 48.51 -136.75 2007 - 2019 Institute of Cosmophysical Researches
PHU 21.03 105.95 9.88 174.58 1996 - 2018 Vietnam National Centre for Science and Techn
PIL -31.67 296.12 -21.2 9.62 2012 - 2019 Servicio Meteorologico Nacional
PPT -17.57 210.42 -16.31 -70.75 1991, 1993-2017 Institut de Physique du Globe de Paris
PST -51.7 302.1 -39.41 13.42 2003 - 2018 British Geological Survey
QSB 33.87 35.64 28.64 108 2000 - 2007 National Centre for Geophysical Research
RES 74.7 265.1 81.85 -26.38 1992 - 2018 Geological Survey of Canada
SBA -77.85 166.76 -79.01 -44.27 1996 - 2018 Institute of Geological Nuclear Sciences
SBL 43.93 299.99 48.77 16.9 2013 - 2019 British Geological Survey
SFS 36.67 354.06 36.92 69.52 2005 - 2019 Real Observatorio de la Armada
SHE -15.96 354.25 -12.01 61.59 2010 - 2019 GeoForschungsZentrum Potsdam
SHU 55.35 199.54 56.1 -96.52 2005 - 2018 United States Geological Survey
SIT 57.1 224.7 61.13 -72.26 1991 - 2019 United States Geological Survey
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OBS LAT LON θ ϕ Period Responsible Institute
SJG 18.1 293.8 26.1 7.7 1991 - 2016 United States Geological Survey
SOD 67.37 26.36 62.58 110.11 1991 - 2017 Finnish Academy of Science
SPG 60.54 29.72 55.88 108.22 2015 - 2016 Russian Academy of Sciences
SPT 39.55 355.65 39.66 71.88 1997 - 2017 Instituto Geografico Nacional
STJ 47.6 307.3 53.32 24.88 1991 - 2018 Geological Survey of Canada
SUA 44.68 26.25 40.41 101.51 1999 - 2019 Geological Survey of Romania
TAM 22.79 5.53 22.53 77.93 1993 - 2019 Centre National d’Astrophysique et Geophysique
TAN -18.92 47.55 -24.26 110.22 1993 - 2007 University of Antananarivo
TDC -37.07 347.69 -30.15 51.96 2009 - 2016 GeoForschungsZentrum Potsdam
TEO 19.75 260.82 26.64 -25.18 2002 - 2008 Instituto Geofisica UNAM
THL 77.48 290.83 83.59 28.19 1991 - 2019 Danish Meteorological Institute
THY 46.9 17.89 43.69 94.67 1991 - 2018 Hungarian Geological Survey
TIK 71.58 129 64.45 -170.84 1991 Arctic and Antarctic Research Institute
TRW -43.27 294.62 -31.37 7.71 2000-2011, 2013-2014 Facultad de Ciencias Astronomicas y Geofisica
TSU -19.2 17.58 -18.78 81.88 2004-2008, 2010-2019 National Research Foundation
TTB -1.21 311.49 5.69 24.67 2018 Observatorio Nacional
TUC 32.2 249.2 38.59 -39.22 1991 - 2018 United States Geological Survey
UPS 59.9 17.35 56.38 97.81 2003 - 2018 Geological Survey of Sweden
VAL 51.94 349.75 52.09 69.37 2002 - 2017 The Irish Meteorological Service
VIC 48.5 236.6 53.74 -55.87 1991 - 2018 Geological Survey of Canada
VNA -70.68 351.72 -61.14 42.12 2014 - 2019 Alfred Wegener Institute
VOS -78.46 106.84 -86.35 45.23 2011-2012, 2015-2018 Arctic and Antarctic Research Institute
VSS -22.4 316.35 -12.92 26.83 1999 - 2019 Observatorio Nacional
WIC 47.93 15.86 44.79 92.38 2015 - 2019 Zentralanstalt für Meteorologie und Geodynamik
WNG 53.74 9.07 51.44 88.65 1994 - 2018 GeoForschungsZentrum Potsdam
YAK 61.96 129.66 55.57 -165.52 2009, 2011-2018 Institute of Cosmophysical Research and Aeronomy
YKC 62.5 245.5 68.57 -49.59 1992 - 2015 Geological Survey of Canada
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Appendix B

(Sub-)Diurnal Filter Responses between
1991-2019

The analogues of figures 5.3 and 5.4 for the entire period 1991-2019 are given in figures B.1 and
B.2. The figures present the 24h, 12h, 8h and 6h filter responses together with combined daily
signal as the sum of the four filters with respect to local time and day of year, alongside the
F10.7 index in the first panel to facilitate comparisons with solar cycle phases. The occurrence
of sunrise and sunset at 110 km altitude is superposed on corresponding panels as (lower and
upper) black dashed lines.
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Figure B.1: Filter outputs for the entire period between 1991 and 2019 as function of solar local time (LT) for the X component of CLF.
From top to bottom: the F10.7 daily values in sfu; x24; x12; x8; x6 and xD. Dashed black lines indicate local time for sunrise (morning
hours) and sunset (evening hours). Periods with unavailable data are not represented and appear as white vertical stripes. Note that the
limits of the colour-scale range from -15nT to 15nT.
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Figure B.2: Analog to Figure B.1 for the Y component of CLF. Note that the limits of the colour-scale range from -30nT to 30nT.
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Appendix C

Coefficients

C.1 Coefficients for the Seasonal and Local Time Model
The tables C.1 and C.2 list the coefficients for the model taking into account the season and
local time x̂L+LT and ŷL+LT as derived by equation (5.5). The provided coefficients represent
the following:

ẑL+LT =
(

k∑
i=0

αi cos(iL) + βi sin(iL)
) k∑

j=0
γj cos(jLT ) + δj sin(jLT )

 (C.1)

=
k∑

i=0

k∑
j=0

αiγj︸︷︷︸
c1

cos(iL) cos(jLT ) + αiδj︸︷︷︸
c2

cos(iL) sin(jLT )

+ βiγj︸︷︷︸
c3

sin(iL) cos(jLT ) + βiδj︸︷︷︸
c4

sin(iL) sin(jLT )

(C.2)
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Table C.1: Coefficients of equation (C.2) for the combined diurnal and semi-diurnal SEA
model x̂L+LT

c1 γ0 γ1 γ2 γ3 γ4 c2 δ1 δ2 δ3 δ4
α0 -0.0263 0.5794 0.0714 0.0388 0.0286 α0 0.5794 0.0714 0.0388 0.0286
α1 -0.0108 0.9172 -0.8563 -0.0125 -0.0027 α1 0.9172 -0.8563 -0.0125 -0.0027
α2 -0.0311 0.2577 0.2100 0.0008 0.0004 α2 0.2577 0.2100 0.0008 0.0004
α3 -0.0095 0.3200 -0.5050 -0.0335 -0.0153 α3 0.3200 -0.5050 -0.0335 -0.0153
α4 0.0037 -0.0296 0.1304 -0.0063 -0.0061 α4 -0.0296 0.1304 -0.0063 -0.0061

c3 γ0 γ1 γ2 γ3 γ4 c4 δ1 δ2 δ3 δ4
β1 0.0182 2.9392 0.5291 0.0129 -0.0007 β1 -2.1186 1.2508 -0.0315 -0.0203
β2 0.0027 0.3747 -0.5330 -0.0217 -0.0104 β2 0.3444 -0.5847 -0.0150 -0.0062
β3 0.0081 -0.3688 0.6905 -0.0099 -0.0050 β3 -0.9466 0.6956 -0.0064 -0.0112
β4 0.0047 0.4800 -0.7203 0.0058 0.0044 β4 0.6183 -0.4768 -0.0227 -0.0199

Table C.2: Coefficients of equation (C.2) for the combined diurnal and semi-diurnal SEA
model ŷL+LT

c1 γ0 γ1 γ2 γ3 γ4 c2 δ1 δ2 δ3 δ4
α0 -0.0150 9.7131 -7.9364 -0.0052 -0.0041 α0 9.7131 -7.9364 -0.0052 -0.0041
α1 -0.0063 -0.9451 0.2759 0.0005 0.0016 α1 -0.9451 0.2759 0.0005 0.0016
α2 0.0122 0.4188 -0.8574 -0.0110 -0.0067 α2 0.4188 -0.8574 -0.0110 -0.0067
α3 0.0106 -0.0033 -0.2664 0.0237 0.0122 α3 -0.0033 -0.2664 0.0237 0.0122
α4 0.0033 0.3732 -0.2935 -0.0066 -0.0001 α4 0.3732 -0.2935 -0.0066 -0.0001

c3 γ0 γ1 γ2 γ3 γ4 c4 δ1 δ2 δ3 δ4
β1 -0.0323 1.6090 -5.0157 -0.0084 0.0067 β1 7.2651 -2.8793 -0.0054 -0.0058
β2 0.0074 -0.4048 0.3428 -0.0095 -0.0050 β2 0.3113 -1.1593 0.0210 0.0078
β3 -0.0082 0.6047 -1.1074 0.0025 0.0087 β3 -0.2510 0.2633 0.0048 0.0034
β4 -0.0208 -0.5754 0.7115 0.0082 0.0079 β4 0.3641 -0.9636 0.0100 0.0073
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C.2 Coefficients for the Solar Activity and Seasonal
Model

The coefficients αi for i = 0, 1, 2 and βi for i = 1, 2 from (5.7) and (5.8) are produced per
component, i.e. one set of coefficients per x24, x12, y24, y12. The corresponding coefficients for
a(L), b(L), c(L), d(L) from equation (5.10) are given in tables C.3 and C.4.

Table C.3: Coefficients α, β from equation (5.10) for x̂24,L+F 10.7 and x̂12,L+F 10.7 models
in (5.9). Recall from (5.7) and (5.8) that b and d describe the linear dependence of the
amplitude and phase on F10.7, respectively.

x̂24,L+F 10.7 a b c d
α0 5.3364 0.0389 32.3355 -0.0863
α1 0.0560 -0.0161 19.5602 -0.0421
β1 1.9733 -0.0061 -47.8145 0.0699
α2 -1.3116 0.0189 -6.8263 0.0580
β2 -0.8604 0.0064 -13.1357 0.0590

x̂12,L+F 10.7 a b c d
α0 2.8252 0.0183 -10.2856 0.0092
α1 0.1543 -0.0055 -20.3110 -0.0441
β1 -0.5147 0.0038 37.0176 0.1298
α2 -0.2379 0.0040 13.3312 -0.1100
β2 -0.3209 0.0030 -2.6032 -0.0821

Table C.4: Coefficients α, β from equation (5.10) for ŷ24,L+F 10.7 and ŷ12,L+F 10.7 models
in (5.9). Recall from (5.7) and (5.8) that b and d describe the linear dependence of the
amplitude and phase on F10.7, respectively.

ŷ24,L+F 10.7 a b c d
α0 9.0574 0.0513 23.9721 0.1454
α1 0.9103 -0.0059 -3.4816 0.0437
β1 4.8206 0.0109 42.4548 -0.1489
α2 -0.5270 0.0081 5.6243 -0.0266
β2 -0.7912 0.0044 -0.4685 -0.0011

ŷ12,L+F 10.7 a b c d
α0 6.8981 0.0398 -114.9332 0.0522
α1 -0.1134 -0.0027 7.3996 -0.0281
β1 2.2607 0.0201 -19.8060 -0.0690
α2 0.5140 0.0048 -2.7156 -0.0098
β2 -0.3712 0.0072 -3.1790 -0.0012
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C.3 Coefficients for the Day-to-Day Variability
The amplitude A of the D2D variability is fitted in dependence of solar longitude L with a 4th
order polynomial in figure 5.14, 5.17 and 5.18. The resulting coefficients from

p(L) = p0 + p1L + p2L2 + p3L3 + p4L4 (C.3)

are given in table C.5.

Table C.5: Coefficients of the polynomial fit in equation (C.3) for the amplitude variations
in season L for the diurnal and semi-diurnal filters, as well as the combined (sub-)diurnal
filter.

ti amo figo p0 p1 p2 p4 p5

x24 6.3043 -0.0009 0.0003 -1.9001e-06 2.8413e-09
x12 19.8149 0.3905 -0.0024 7.7867e-07 8.5360e-09
y24 23.0659 0.0945 2.6951e-05 -5.7946e-06 1.3724e-08
y12 5.2257 0.1525 -0.0004 -1.9931e-06 5.7889e-09
xD -9.0889 -0.0616 -0.0003 4.3415e-06 -8.0766e-09
yD 56.1542 -0.0615 0.0033 -2.6301e-05 4.8366e-08
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Appendix D

Storm Parameters

D.1 Storm Signature in Dst
The moderate storm that is identified on 27th July 1999 in Li and Yao (2020) with a minimum
Dst of −38 nT does not have a strong signature in the X and Y measurements from CLF. Using
residuals derived from the filter baseline during this storm event in figure D.1 in orange would
not lead to a significant underestimation of the storm. In fact, the filter baseline smoothly
follows the day-to-day variation during this day for both components, suggestion no need to
replace it.
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Figure D.1: The storm event in orange from 27th July 1999 from the storm list of Li and
Yao (2020). From top to bottom: Dst index, X component and Y component at CLF.
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D.2 Details of the De-trended Long-term Horizontal
Intensity

Figure D.2 shows several magnetic observatories and their relation between SYM-H and the
de-trended long-term horizontal intensity h̄>24.

Figure D.2: Correlation with SYM-H for the de-trended long-term horizontal intensity
h̄>24 for several magnetic observatories in mid-latitudes.
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D.3 Disturbance List for CLF
Table D.1 lists disturbance events for the magnetic observatory Chambon-la-Fôret. Figures D.3
to D.7 illustrate the X and Y components, together with the filter baseline during these events.

# Start Time End Time Dstmin Flag
1 10-Mar-1998 10:00:00 14-Mar-1998 10:00:00 -116 0
2 25-Jun-1998 18:30:00 26-Jun-1998 10:30:00 -101 1
3 08-Nov-1998 20:30:00 11-Nov-1998 08:30:00 -142 1
4 18-Feb-1999 03:30:00 21-Feb-1999 09:30:00 -123 0
5 30-Jul-1999 12:00:00 01-Aug-1999 10:00:00 -53 1
6 22-Sep-1999 10:00:00 23-Sep-1999 10:00:00 -173 1
7 01-Mar-2000 03:30:00 03-Mar-2000 00:30:00 -43 1
8 26-Jun-2000 02:00:00 27-Jun-2000 08:00:00 -76 0
9 28-Oct-2000 20:30:00 30-Oct-2000 18:30:00 -127 1
10 23-Jan-2001 12:00:00 25-Jan-2001 06:00:00 -61 1
11 27-May-2001 17:30:00 29-May-2001 08:30:00 -42 1
12 31-Oct-2001 14:30:00 02-Nov-2001 21:30:00 -106 1
13 28-Feb-2002 05:30:00 01-Mar-2002 21:30:00 -71 1
14 01-Aug-2002 05:30:00 03-Aug-2002 07:00:00 -51 1
15 14-Dec-2002 06:00:00 15-Dec-2002 15:00:00 -42 0
16 01-Feb-2003 17:00:00 03-Feb-2003 08:00:00 -68 0
17 10-Jul-2003 18:00:00 13-Jul-2003 06:00:00 -105 0
18 20-Nov-2003 08:30:00 24-Nov-2003 03:30:00 -422 1
19 22-Jan-2004 04:00:00 24-Jan-2004 04:00:00 -130 0
20 22-Jul-2004 14:30:00 24-Jul-2004 01:30:00 -99 1
21 05-Dec-2004 09:00:00 07-Dec-2004 04:12:00 -44 0
22 17-Jan-2005 06:30:00 19-Jan-2005 12:00:00 -103 1
23 10-Jul-2005 11:30:00 11-Jul-2005 09:30:00 -92 1
24 31-Oct-2005 04:30:00 02-Nov-2005 05:30:00 -74 1
25 23-Jan-2006 00:00:00 24-Jan-2006 11:00:00 -21 0
26 27-Jul-2006 19:00:00 28-Jul-2006 10:00:00 -48 0
27 30-Sep-2006 03:30:00 02-Oct-2006 03:00:00 -51 1
28 23-Mar-2007 10:00:00 24-Mar-2007 18:00:00 -72 0
29 22-May-2007 10:00:00 24-May-2007 08:00:00 -58 0
30 19-Nov-2007 21:30:00 22-Nov-2007 07:30:00 -59 1
31 08-Mar-2008 12:00:00 10-Mar-2008 09:00:00 -86 0
32 14-Jun-2008 06:00:00 15-Jun-2008 08:00:00 -41 0
33 11-Oct-2008 07:00:00 12-Oct-2008 09:00:00 -54 0
34 03-Feb-2009 18:30:00 06-Feb-2009 05:24:00 -42 1
35 22-Jul-2009 01:00:00 23-Jul-2009 10:00:00 -83 0
36 29-Oct-2009 14:00:00 31-Oct-2009 09:03:00 -34 0
37 14-Feb-2010 19:00:00 17-Feb-2010 06:00:00 -59 0
38 03-Aug-2010 19:30:00 06-Aug-2010 22:30:00 -74 1
39 28-Dec-2010 09:00:00 29-Dec-2010 20:30:00 -43 1

Table D.1: Disturbance list for CLF with start and end-times, minimum Dst value Dstmin.
The last column Flag indicates if the respective event is found in the storm list of Li and
Yao (2020).
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Figure D.3: The components X and Y for each of the events between 1998-2000 from the storm list of CLF. The components are in grey,
the initial filter baseline in black and the events are indicated in orange.
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Figure D.4: The components X and Y for each of the events between 2001-2003 from the storm list of CLF. The components are in grey,
the initial filter baseline in black and the events are indicated in orange.

257



Figure D.5: The components X and Y for each of the events between 2004-2006 from the storm list of CLF. The components are in grey,
the initial filter baseline in black and the events are indicated in orange.
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Figure D.6: The components X and Y for each of the events between 2007-2009 from the storm list of CLF. The components are in grey,
the initial filter baseline in black and the events are indicated in orange.
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Figure D.7: The components X and Y for each of the events for 2010 from the storm list of CLF. The components are in grey, the initial
filter baseline in black and the events are indicated in orange.
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Appendix E

Results for further Observatories

During the course of this thesis most of the results were presented for the magnetic observatory
Chambon-la-Forêt as motivated in 4.1. Still, it is of high interest, and after fruitful discussions
with the jury, the present manuscript profits from adding results of further observatories which
this appendix is dedicated to.

E.1 Solar Quiet Current Patterns
Using the superposed epoch analysis (SEA) as introduced in chapter 5.2.1 reveals the solar quiet
current footprints within the combined (sub-)diurnal filter responses. Figure E.1 presents the
patterns of further stations, together with the idealised Sq current geometry and the expected
related signals for the horizontal components X and Y (taken from Amory-Mazaudier (1983)).
For all stations located in the northern hemisphere, the yD component describes the expected
maximum during morning hours and minimum during afternoon hours, while the yD component
at stations located in the southern hemisphere describes the inverse with minimum during morn-
ing and maximum during afternoon. The xD component follows the expected Sq patterns at all
stations with stations that are closely below the Sq focus showing less pronounced amplitudes.
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Figure E.1: Results of the SEA of the combined (sub-)diurnal filter responses xD and yD of further geomagnetic observatories for geographic
sectors North America, Europe, Asia and Australia. On the left the ideal solar quiet current patterns are indicated, together with the
expected horizontal components X and Y responses.
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E.2 Geomagnetic Baselines for a Moderate Geomag-
netic Storm

In chapter 6.3, the results of the full baseline algorithm are presented for the geomagnetic
observatory Chambon-la-Foret. Figure E.2 illustrates the resulting baselines x̃B and ỹB for the
moderate geomagnetic storm of mid-December 2002 for several geomagnetic observatories on a
global scale. In general, the final baseline describes quiet variations well. The algorithm did not
replace the filter baseline for the magnetic observatory Tuckson (TUC), and the X components
of Phuthuy (PHU) and Kakadu (KDU).
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Figure E.2: Final geomagnetic baselines for further geomagnetic observatories located in geographic sectors North America, Europe, Asia
and Australia during a moderate geomagnetic storm.
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1. Introduction
Ground magnetic observatories continuously monitor the evolution of Earth's magnetic field, producing high 
quality magnetic field measurements at stable locations. These measurements display a high degree of variability 
as the geomagnetic field is a superposition of various sources spanning a wide amplitude-frequency spectrum 
(Constable & Constable,  2004). These sources can operate on overlapping frequencies and their spatial and 
temporal separation is an active field of research requiring sophisticated modeling techniques (Wardinski & 
Thébault, 2019, and references therein). Internal sources comprise the main field that is generated within the fluid 
outer core by geodynamo processes; the lithospheric field as a result of the superposition of induced and remnant 
magnetisation of the Earth's sub-surface rocks; and the oceanic circulation, tidal and induction effects. The most 
prominent temporal feature of the internal part is the variation of the main field, the so-called secular variation, 
noticeable over periods exceeding a month. The main magnetic field accounts for over 93% of the magnetic field 
measured at the Earth's surface. The rest may be attributed to external sources with origins in the magnetosphere 
and ionosphere which temporal variations range from shorter than a few seconds to decades (Finlay et al., 2017). 
Among them, the Sun with its solar cycle induces variations with periods of around 11 years, as well as periods 
of 27 days due to its rotation (Kunagu et al., 2013; Ma et al., 2012; Shinbori et al., 2014). Disturbance events like 
solar flares and coronal mass ejections that hit Earth's magnetic field are able to induce sudden changes, within 

Abstract The geomagnetic field is composed of a variety of sources that act on a wide range of timescales 
and amplitudes. The separation of magnetic storm effects from quiet variations is needed to accurately quantify 
impacts of space weather events. The extraction of such quiet contributions within geomagnetic measurements 
is achieved by the determination of baselines, which, ideally, is done by a simple algorithm which captures quiet 
sources suitably well, while being applicable to an extensive network of magnetic observatories independent 
of the period of time. In this work, we apply signal filtering techniques on the horizontal components of 
geomagnetic field measurements from low- and mid-latitude observatories to determine baselines. The 
variations within the baseline are investigated for magnetically quiet periods between 1991 and 2019, focusing 
on long-term trends, seasonal and local time dependencies, and day-to-day variability. The analysis confirms 
that the contributing quiet sources include the secular variation and the solar quiet (Sq) current system. The 
non-negligible day-to-day variability, that is typical for Sq in low- and mid-latitudes, is embedded within 
the baseline. Thus, the filter approach extracts quiet magnetic field variations well. Comparisons with other 
baseline methods show good agreements. We conclude that the filter approach can be used to determine 
baselines automatically during magnetically quiet periods without the need of further apriori information and is 
applicable on a wide network of magnetic observatories. It marks the first step for deriving magnetic indices for 
(near) real-time space weather applications.

Plain Language Summary The Earth's intrinsic magnetic field is generated by the motion of 
molten rock within its interior and interacts with the constant flow of charged particles coming from the Sun. 
Measurements of the geomagnetic field strength on the surface not only include the intrinsic magnetic field but 
also phenomena that arise due to this interaction. Some of these phenomena show regular variations without 
major effects and some, like solar storms, are able to disrupt the geomagnetic field, affecting technological 
systems. In order to quantify how harmful disruptive events are, it is important to determine the regular 
variations first. In this paper, we determine the regular variations within the signal (baselines) by applying 
signal filtering techniques on geomagnetic field measurements. Our analysis shows that regular variations 
during undisturbed days in low- and mid-latitude ranges are captured accurately.
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minutes to days, reaching relatively high amplitudes of over 100 nT within geomagnetic field measurements at 
low-to mid-latitudes (Cliver & Dietrich, 2013; Kozyreva et al., 2018). On days with no significant external influ-
ences, known as quiet days, the magnetic field, measured at a stable location on Earth's surface, features daily 
variations in the sense of a smooth curve. These variations have distinct contributions with periods of 24, 12, 8 
and 6 hr (Campbell, 2003) and are mainly associated with the solar quiet (Sq) current systems at mid-latitudes. 
These systems feature two current cells, one in the northern hemisphere (NH) flowing anti-clockwise and one 
in the southern hemisphere (SH) flowing clockwise within the sunlit ionospheric dynamo region which are the 
result of ionisation by solar radiation (Campbell, 1989). They show peculiar seasonal and local time depend-
encies, being most intense during summer months in mid-latitudinal regions and reaching lowest amplitudes 
during the night when irradiation ceases (Hitchman et al., 1998; Shinbori et al., 2017; Takeda, 1999; Yamazaki 
& Maute, 2016).

Thus, magnetic field measurements are a rich source of information on various physical phenomena and processes 
affecting Earth. An important application of magnetic observatory measurements is the derivation of magnetic 
indices which quantify the overall geomagnetic activity or idealised physical processes like ionospheric and 
magnetospheric current systems (see Menvielle et  al.  (2011) for a comprehensive review). The three indices 
Kp, aa and am are sub-auroral magnetic activity indices endorsed by IAGA, the International Association of 
Geomagnetism and Aeronomy (https://www.iaga-aiga.org/). These indices rely on intermediate data-products of 
magnetic observatory time series, the so-called K-indices, having a temporal resolution of 3 hr. One of the main 
challenges when deriving magnetic indices is to separate the contributions of relevant sources from the rest of 
the magnetic field signal in an effective and timely manner. Generally, this is achieved by determining a so-called 
“baseline” which is extracted from the measurements. This definition of “baseline” is used throughout the present 
paper. As such, it should not be confused with the baseline used in other contexts, for example, in the calibration 
of magnetic observatory data. The first qualitative description of a baseline was given by Bartels et al. (1939) 
who defined it as a smooth and to-be-expected curve during a magnetically quiet day. At this epoch, its derivation 
included hand-scaling of such regular daily variation curves as identified by trained observers. Mayaud (1967) 
concretised this description to rules which act as guidelines. With the raise of the digital age and the increas-
ing availability of magnetic data, the need for automatic determination of baselines has become imperative. In 
1991, IAGA endorsed four algorithms to automatically determine the quiet baseline for K-indices (Menvielle 
et al., 1995) which includes the Finnish Meteorological Institute (FMI) method (Sucksdorff et al., 1991). The 
FMI method uses the observatory's magnetic latitude as input to derive baselines. The main geomagnetic field 
changes over time, thus magnetic coordinates evolve. They have to be calculated and adjusted following the time 
frame of availability of the international reference model (IGRF updated every 5-years).

With the potential of improvement given by data accessibility, many other techniques and methodologies have 
been developed during the past years. Some prominent examples include the baseline calculation for the PC 
index as introduced by Janzhura and Troshichev (2008), the method used by the International Monitor for Auro-
ral Geomagnetic Effects (IMAGE) as described by Van De Kamp (2013) and the one used by SuperMAG as 
described by Gjerloev (2012).

In this paper, we introduce a direct and easily reproducible method to determine such magnetic field baselines 
for ground magnetic observatory measurements. It is based on fundamental signal treatment techniques and we 
investigate its applicability to produce baselines between 1991 and 2019. We limit our study to magnetic obser-
vatories located at low- and mid-latitudes and present physical analysis and interpretation of contributing sources 
during magnetically quiet periods.

The geomagnetic field data and derivation of the baselines are described in Section 2. Section 3 analyses observed 
variations within the different frequency regimes, which are related to physical phenomena during magnetically 
quiet periods in Section 4. Section 5 demonstrates the baseline and compares it to other methods, followed by the 
conclusion (Section 6).

2. Data
Vectorial geomagnetic field measurements from magnetic observatories between 1991 and 2019, covering 
more than two solar cycles, are used. The measurements have a temporal resolution of 1 min, that is, one day 
comprises 1440 data points. They are made available through the International Real-time Magnetic Observatory 
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Network (INTERMAGNET, https://intermagnet.github.io/) data repository 
which ensures high quality data with consistent observing practices regarding 
modern standard specifications for measurement procedures and recording 
equipment. The use of definitive data, that is, fully calibrated magnetic obser-
vatory data, rather than variational data issued from direct outputs of instru-
ments, allows to fully assess the magnitude of the various contributions and 
to take advantage of the homogeneous and continuous time series.

In the following, we consider the horizontal components of the magnetic 
field in the local spherical frame, namely X towards the geographic North and 
Y towards the geographic East (H being the intensity of the magnetic field 
in the horizontal plane, i.e., 𝐴𝐴 𝐴𝐴 =

√

𝑋𝑋2 + 𝑌𝑌 2 ). We concentrate on observato-
ries in regions with magnetic latitudes between ±10° and ±60° in eccentric 
dipole coordinates (Laundal & Richmond, 2016). This constraint allows to 
mitigate influences from equatorial and auroral electrojets at equatorial and 
high magnetic latitudes.

To illustrate our results, we primarily use data from the magnetic observatory Chambon-la-Forêt (CLF) located 
in France, Europe, with geographic latitude 48.025°. It is located in mid-latitudes and can thus be considered a 
representative example. Other observatories are used when applicable.

A list of all used observatories (location and used data) is enclosed as Supporting Information S1.

2.1. Baseline Derivation

Magnetic field measurements may be viewed as discrete time signals consisting of the superposition of various 
sources. In order to extract specific frequency contributions, a finite impulse response (FIR) filter is applied. 
For the truncation, we make use of the Hamming window function to smooth the convolution operation in the 
frequency domain with a window-size of 3  days, that is, 3  days correspond to 4320  min/data-points. These 
filtering techniques and window functions are standard tools in signal processing described in corresponding 
books, for example, Proakis and Manolakis (2006). Similar numerical filters have been used to remove diurnal 
components from ground magnetic measurements, see for example, Behannon and Ness (1966a); Behannon and 
Ness (1966b); Ness and Williams (1966); Bhargava and Yacob (1970); Jadhav et al. (2002).

The main contributions to the quiet daily variations are to be found within the periods of 24, 12, 8 and 6 hr in low- 
and mid-latitudinal regions. Additionally to these (sub-) diurnal variations, a smooth change of the geomagnetic 
field is induced by sources acting above the 24 hr timescales (like the secular variation). These considerations 
result in a total of five filters. To extract long-term variations, we use a low-pass filter with cut-off frequency of 
7.716 × 10 −6 Hz corresponding to variations above 36 hr within the signal. For the four (sub-) diurnal frequen-
cies, we eventually use band-pass filters that are implemented with the help of low-pass filters. To extract the 
24-hr variations, we apply a low-pass filter with cut-off frequency of 1/24hr = 1.1574 × 10 −5 Hz on the signal, 
from which we subtract the output of the long-term filter. The 12-hr variations are then computed as the differ-
ence between the low-pass filter with cut-off frequency of 1/12hr = 2.3148 × 10 −5 Hz applied on the signal 
and the sum of the outputs of the 24 hr band-pass and the long-term filter. The 8 and 6 hr band-pass filters are 
implemented analogously. The filters are applied to the horizontal components X and Y of the geomagnetic 
field measurements. In the following, we label the magnetic observatory measurements in capital X, Y, and the 
filter outputs in lower-case x, y with the corresponding period range as subscript, as summarised in Table 1. 
The sources of the quiet geomagnetic field superpose each other and accordingly the baseline per component is 
defined as the sum of the five filter outputs, that is, the baseline for X is xB = x>24 + x24 + x12 + x8 + x6 and for Y is 
yB = y>24 + y24 + y12 + y8 + y6. These baselines are direct filter outputs and thus totally independent of any apriori 
information regarding the position of the considered magnetic observatory or of the local time. Figure 1 shows an 
example of the decomposition of X and Y from CLF by each of the filters in the five upper panels. The baseline 
is demonstrated in the sixth panel (in red) plotted together with the measurements (in black). The residuals are 
calculated as the difference between the magnetic observatory measurements and the defined baseline, visualised 
in the bottom panel.

Signal contribution Pass frequencies Notation

Long-term below 7.716 × 10 −6 Hz x>24 y>24

Diurnal 7.716 × 10 −6–1.1574 × 10 −5 Hz x24 y24

Semi-diurnal 1.1574 × 10 −5–2.3148 × 10 −5 Hz x12 y12

8 hr 2.3148 × 10 −5–3.4722 × 10 −5 Hz x8 y8

6 hr 3.4722 × 10 −5–4.6296 × 10 −5 Hz x6 y6

Note. The sum of the five filter outputs forms the baselines xB and yB.

Table 1 
Finite Impulse Response (FIR) Filters, Corresponding Passing Frequencies 
and Their Notation
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2.2. Selection of Magnetically Quiet Days

In order to understand which quiet sources are contained within our filter baseline, we have to study its variations 
during geomagnetically quiet periods. Therefore, we select time intervals for which the contribution of distur-
bance events from external sources like geomagnetic storms is minimised. To do so, we need to use an independ-
ent indicator regarding the quietness of the considered days. The quietest CK-days (“Really Quiet (C)” and “Quiet 
(K)”, http://isgi.unistra.fr/events_ckdays.php) are IAGA-endorsed data products provided by the International 
Service of Geomagnetic Indices (ISGI, http://isgi.unistra.fr/). They indicate magnetically quietest days by using 
the aa index (Mayaud, 1972), with a mean lower than 13 nT. Two data products exist: the quietest days over 
24-hr (CK24) and over 48-hr (CK48) centered on the UT day. We thus choose the CK48 days in order to be as 
strict as possible in ensuring the minimisation of external disturbance contributions within the magnetic field 
measurements. Indeed, between 1991 and 2019, there is a total of 3 040 CK48 days. The amount of quiet days 

per year is not evenly distributed (see bottom panel of Figure 2) and clearly 
anti-correlated with solar activity (top panel). To quantify solar cycle and 
solar activity, we use the well defined daily F10.7 index, measured in solar 
flux units (sfu), see Tapping (2013) for an overview.

3. Variations of the Filter Outputs
In this section, we first present the filter outputs during the entire consid-
ered period, revealing their global variations. These results lead us to deeper 
investigate the variations within the combined daily filter outputs during 
magnetically quiet periods only.

3.1. Filter Outputs

3.1.1. Long-Term Filters

The long-term filters preserve all contributions with periods above 36  hr. 
Their outputs x>24 and y>24 are shown in Figure 3 for CLF. The upper panels 
show variations over 29 years (1991–2019), whereas the lower panels focus 
on a three month period (October–December 2007) comparing long-term 
filters (blue) with the magnetic observatory measurements X, Y (grey). The 

Figure 1. Decomposition of X (left) and Y (right) measurements at Chambon-la-Forêt over 6 quiet days. From top to bottom: 
the five consecutive finite impulse response filters; comparison of measured magnetic field component (black) with the 
determined quiet baseline (red); residuals calculated as difference between measurements and baseline.

Figure 2. Solar activity and quiet days between 1991 and 2019. The upper 
panel depicts the F10.7 daily values in solar flux units, while the lower panel 
indicates the amount of magnetically really quiet (CK48) days per year.
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upper left panel shows a steady increase in x>24 of about 570 nT, with shorter fluctuations of up to 300 nT during 
the considered time-interval. Similarly, the right upper panel shows a steady, but steeper increase of y>24 (around 
1500 nT), transitioning from negative to positive values around 2014, with shorter fluctuations in the order of 
tens of nanotesla. The lower panels illustrate variations in the 27-days regime which are very clear for x>24 and 
less clear, but still present, for y>24. Physical processes that are responsible for these variations are discussed in 
Section 4.1.

3.1.2. 24h, 12h, 8h and 6h Filters

In this subsection, we look at the global patterns of the 24, 12, 8 and 6 hr filter outputs of the X and Y components 
at CLF and the combined daily signal containing the sum of the four filter outputs: xD = x24 + x12 + x8 + x6 and 
yD = y24 + y12 + y8 + y6. They are presented in Figures 4 and 5 with respect to local time and day of year, along-
side the F10.7 index to facilitate comparisons with solar cycle phases. For demonstration purposes, we illustrate 
dependencies on local time, season and solar activity corresponding to variable solar irradiation conditions over 
approximately one solar cycle between 2000 and 2012. The analog figures for the entire period 1991–2019 can 
be found in Supporting Information S1.

We first focus on the individual filter outputs which are presented in the four central panels of Figure 4 for X 
and of Figure 5 for Y. Comparisons to F10.7 (top panels) show that the level of magnetic activity of each filter 
output, especially the 24 hr ones, is higher during the maximum phase of the solar cycle. Periodical patterns can 
be observed with respect to day-of-year and, more specifically, season and local time with diurnal, semi-diurnal, 
8 and 6 hr recurrence for each individual filter output. These patterns can be disturbed from 1 day to the other 
by magnetospheric processes enhancing the level of magnetic activity, especially during the maximum of the 
solar cycle. Finally, the filter outputs contributing to the X component are in general twice as less intense as the 
ones contributing to the Y component. More specifically, for the X component, the 24 hr filter is by far the most 
intense, the 12, 8 and 6 hr filter contributions being secondary, while for the Y component the 24 and 12 hr filters 
are more comparable in intensity.

Second, we look at the combined daily signals xD and yD presented in the lowest panels of Figures 4 and 5. Simi-
lar to the individual filter outputs, yD is twice as intense as xD. For both, the periodical patterns remain clear and 
highlight solar cycle, seasonal and daily variations with enhanced activity during solar maximum (around 2002), 
summer periods and daylight hours. xD has a seasonal-dependent minimum around local noon which is surrounded 

Figure 3. Variations within the long-term contributions x>24 (left panels) and y>24 (right panels) in blue for Chambon-la-Forêt. Upper panels demonstrate the long-term 
trend over 29 years, while the lower panels present a zoomed-in view of 3 months whereby the magnetic components X, Y are indicated in grey.
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by two positive crests of activity around dawn and dusk (at least during summer). yD has a maximum followed 
by a minimum of activity, with the zero-crossing centred around local noon, which shows no clear dependency 
on season. We superimposed the occurrence of sunrise and sunset at 110 km altitude on corresponding panels in 
Figures 4 and 5 (black dashed lines). The activity increase is well phased with sunrise for both combined signals, 
while the activity decrease is more complex to associate with sunset. A clear reduction of the activity is observed 
in the night time for yD where it almost reaches zero, implying that all filter outputs added together cancel out, 

Figure 4. Filter outputs between 2000 and 2012 as function of solar local time (LT) for the X component of Chambon-la-Forêt. From top to bottom: the F10.7 daily 
values in solar flux units; x24; x12; x8; x6 and xD in nT. Dashed black lines indicate local time for sunrise (morning hours) and sunset (evening hours). Periods with 
unavailable data are not represented and appear as white vertical stripes. Note that the limits of the colour-scale range from −15 to 15 nT.

Figure 5. Analog to Figure 4 for the Y component of Chambon-la-Forêt. Note that the limits of the colour-scale range from −30 to 30 nT.
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showing that only the combination of the individual filters is physically meaningful. The combined signal xD still 
displays night-side activity especially during solar maximum, but also in summer nights during solar minimum.

3.2. Variations of the Combined Daily Filters During Magnetically Quiet Periods

The previous section showed a clear trend within the long-term filters that follows secular variation (see 
Section 4.1). There are evident dependencies of the combined daily filters on season and local time. However, 
all filter outputs also contain obvious storm signatures which potentially mask out the quiet magnetic variations. 
As we would like to better understand the quiet sources that contribute to the combined daily filters, we need to 
avoid storm signatures as much as possible and thus, we constrain the following analysis to magnetically quiet 
periods only.

3.2.1. Seasonal and Local Time Patterns

To gain a better understanding of the variations within the combined daily filter outputs, we focus on their local 
time and seasonal dependencies. We show examples for several observatories at low and mid-latitudes, where the 
signatures of equatorial and auroral electrojets are minimized, and during magnetically quiet periods as defined 
in Section 2.2. Per magnetic observatory, we conduct a super-posed epoch analysis (SEA) of xD and yD in depend-
ence of solar local time and day of year (season) for CK48 days between 1991 and 2019 (see Figure 2). The season 
can be described by the solar longitude Ls ∈ (0°, 360°) which is derived from the position of Earth around the 
Sun, whereby Ls = 0° defines spring equinox in the NH. The data is arranged into bins of ΔLs = 10° (vertical 
axis) and ΔLT = 10 min (horizontal axis). The value per bin is derived as the average of all values that belong to 
the specific bin. Here we present four representative stations in detail. The SEA of further stations may be found 
in Supporting Information S1. The selection of specific observatories presented in this study is motivated by the 
need to examine the baseline properties in both hemispheres and in different geographic sectors while ensuring 
that the length of considered time series is sufficient to produce meaningful statistics. The period for which data 
is available at each observatory can be found in Supporting Information S1. Nevertheless, an exhaustive exami-
nation of the baselines obtained shows consistent results, indicating that the filtering method is applicable for all 
INTERMAGNET observatories at low and mid-latitudes.

Figure 6 presents the resulting SEA for two European observatories: CLF and San Fernando (SFS), and two 
Australian observatories: Alice Springs (ASP) and Canberra (CNB). Note that they are located in latitude from 

Figure 6. Super-posed epoch analysis of the combined signals xD and yD, depending on local time and season for two European observatories (CLF, SFS) and two 
Australian observatories (ASP, CNB), during magnetically quiet days. Black lines indicate local sunrise (morning hours) and sunset (evening hours). Note that the 
colour-scale is the same for all panels.
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North to South in this order. The black lines indicate the mean local sunrise (morning hours) and sunset (evening 
hours) at an altitude of 110 km between 1991 and 2019. The upper left panels show the SEA for CLF. The 
combined filter output yD describes a maximum during morning and a minimum during afternoon hours, almost 
vanishing during night times throughout the year. The increase in activity during morning hours strictly follows 
local sunrise, appearing earlier during summer than during winter, while the activity decreases rather constantly 
in the afternoon around 15 hr LT, except during winter solstice. In addition to the prolonged activity, the signal 
intensity is stronger during summer (in NH Ls = 90°) than during winter (in NH Ls = 270°). One of the most 
striking features is the relatively constant zero-crossing of the activity around noon for yD. The pattern of xD is less 
clear. As noted in the global patterns before, the dawn crest of activity is well phased with sunrise and is present 
throughout the solar longitude, while the minimum and the dusk crest that extends into the pre-midnight hours, 
are mainly observed during summer and autumn.

SFS is located South of CLF and its SEA is presented in the lower left panels of Figure 6. Its yD shows a remarka-
bly similar pattern as CLF, being well phased with sunrise and to a lesser extent with sunset. The main difference 
to CLF lies within its xD which describes a maximum around local noon from spring to autumn. Around autumn 
equinox (Ls = 180°), the maximum abruptly shifts to morning hours and returns to noon hours shortly after 
winter solstice (Ls = 270°). On the other hand, no clear activity is observed during night, at dawn, or at dusk and 
only a rather limited minimum is observed after dawn during summer.

The solar longitude describes the season reversely in each hemisphere, for example, summer in SH is at Ls = 270° 
and winter at Ls = 90°. ASP is located in the SH and its SEA is presented in the top right panels of Figure 6. 
The combined signal yD describes a minimum in the morning hours and a maximum during afternoon hours, as 
opposed to NH stations, with stronger amplitudes during summer. As for NH observatories, yD is well phased 
with sunrise and additionally with sunset. The only exception is during winter at sunrise, when a local and 
fainter maximum can be observed. The combined signal xD is not as clearly phased with sunrise. During spring 
(Ls = 180°) and autumn equinox (Ls = 0°), xD shows a maximum around noon. Similar to SFS in the NH, the 
maximum shifts to morning hours shortly after autumn equinox and returns to noon hours at spring equinox.

CNB is situated south of ASP and analogously shows a remarkably similar behaviour in yD. xD has a minimum 
during day-light hours that shifts to later LT between autumn and spring equinox. During local winter, xD shows 
also a local maximum in the morning hours.

These global patterns may be interpreted as magnetic footprints of current cells flowing anti-clockwise in the NH 
and clockwise in the SH, following the apparent motion of the sun. The focus would be located between CLF and 
ASP for the northern cell and between CNB and ASP for the southern one. More physical interpretation of these 
results are given in subsection 4.2.

3.2.2. Day-To-Day Variability

The combined filter outputs xD and yD not only vary on seasonal timescales but also on a day-to-day basis, even 
during quiet periods. This behaviour can be followed on the top panel of Figure 7 where CLF's yD is plotted over 
consecutive CK48 days during summer 2009. We see a recurrent sinusoidal pattern during sunlit hours which 
amplitude and occurrence times of maxima (red stars) and minima (blue stars) vary from one day to the other. 

Figure 7. Day-to-day variability of yD at Chambon-la-Forêt. The upper panel depicts the daily evolution of yD (blue) with daily maximum/minimum marked by red/blue 
dots. The lower panel presents the variations in delay (black) and amplitude (magenta) between maxima and consecutive minima.
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To illustrate this variability quantitatively, we first determine the local time occurrence of the maximum and 
minimum for each day during sunlit hours. Then, the amplitude is derived as the difference between the values 
at maximum and at the consecutive minimum (given in nanoteslas) and finally, the delay is given as the time in 
hours that has passed to reach the consecutive minimum from the maximum. The bottom panel of Figure 7 illus-
trates these amplitudes (magenta) and delays (black) from 1 day to the next. The amplitude varies significantly on 
a daily basis between 20 and 80 nT, as does the delay between 5 and 8 hr in this example.

We compute the day-to-day parameters, that is, the occurrence times of extrema, peak-to-peak ampitudes and 
delays, for yD at CLF for all quiet days between 1991 and 2019. They are presented as a scatter-plot against solar 
longitude in Figure 8 and from which it is clear that the day-to-day variability has a strong seasonal dependency. 
For the maximum, two regimes can be distinguished: during summer months the maxima occur around 06–09 hr 
LT, while they occur later at around 09–10 hr LT during winter, which is directly related to the LT sunrise shift 
with season as already seen in the previous section. The transition between these two regimes happens abruptly 
around Ls = 10° and Ls = 180°. On the other hand, the timing of the minimum is more constant over time, which, 
too, is related to the decrease of activity observed constantly around 15 hr LT in Figure 6. The central panel 
shows a clear sinusoidal dependency of the amplitude on the season. This dependency can be described by a 4th 
order polynomial fit which summer maximum is 63 nT and winter maximum 23 nT, indicating that the amplitude 
during summer is about 3 times larger than during winter. Finally, the right panel shows that the delay between 
maximum and consecutive minimum is longer during summer (around 6–7 hr) than during winter (around 5 hr).

For xD, the definition of a maximum and minimum (and successively delay and amplitude) during sunlit hours is 
not applicable. Its trend generally has only one extremum during the day (see Figure 6) which visualisation analog 
to Figure 8 can be found in Supporting Information S1. The timing of its minimum at CLF shows a distinct shift 
of approximately 2 hr around equinox (starting around 08 hr LT between spring and summer and around 10 hr LT 
during autumn and winter) which is comparable to the shift observed in yD. The amplitude of the minimum has 
a similar trend to what is observed for the peak-to-peak amplitude of yD: a polynomial fit of order 3 can be used 
to describe its variations. The summer minimum is around −15 nT and the spring minimum is around −5 nT, 
indicating that the summer amplitude is 3 times larger than during spring.

Returning to the day-to-day variability of the signal, it is clear from Figure 8 that, for any given Ls, a spread is 
observed in all three parameters of interest: local time occurrence of extrema, amplitude and delay for yD. This 
spread is higher during solstices than during equinoxes, and is also doubled during summer with respect to winter. 
For the amplitude, the standard deviation is 12.17 nT for the summer period (45° < Ls < 135°) and 7.8 nT during 
winter (225° < Ls < 315°), suggesting that the spread during summer increases by over 60% compared to winter. 
For xD amplitude, the standard deviation, however, is rather constant, with maximum differences of 20%.

Overall, we see a total day-to-day variability in amplitude for yD of about 20%–30% and for xD of about 20%.

Figure 8. Statistics of seasonal and day-to-day variability of yD at Chambon-la-Forêt during quiet days between 1991 and 2019. From left to right, the panels show 
local time occurrence of extrema, amplitude and delay between them.
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4. Physical Sources Within the Baseline
In this section, we relate the characteristic variations of the filter outputs, that is, the baseline elements, to sources 
that are known to contribute to the quiet geomagnetic field.

4.1. Secular Variation

The secular variation is the evolution of Earth's intrinsic magnetic field over time that induces a smooth shift 
within geomagnetic field measurements at stable ground locations. The magnetic pole configuration is such that 
the magnetic North Pole moves closer to Europe (Olsen & Mandea, 2007) and thus CLF is slowly drifting to 
higher magnetic latitudes, enhancing the magnetic field intensity at its location. This increase in field strength 
can be observed in each component of the magnetic field measured at CLF and in particular here in both x>24 and 
y>24 (see the upper panels of Figure 3). The magnitude of y>24 is lower than that of x>24 as the magnetic meridian 
is close to geographic North (equal in 2014 when Y = 0 and thus declination was zero at that point). Further-
more, y>24 shows less short-time variability than x>24, as it is proportionally less affected by fluctuations from 
external sources. The observed 27-day variation is in agreement with Briggs (1984) and Van De Kamp (2013) 
who attribute these to either the solar rotation period or tidal variations that arise from the interaction between 
solar-quiet and lunar tides. However, we cannot exclude the possibility that these variations are a superposition of 
sources enhancing each other within the same frequency range. Here we would like to point out, that signatures 
of geomagnetic storms are identifiable within the long-term filters. For example, the famous Halloween storms 
in 2003 can be clearly identified in both, x> 24 and y> 24.

4.2. Seasonal and Local Time Patterns of the Quiet Daily Variations

The analysis presented in Figure 6 is in good agreement with the magnetic footprints one expects from the solar 
quiet current cells flowing at an altitude of about 110 km above the magnetic observatories, that is, the increase 
of activity at sunrise, the inversion of the xD variations for locally close observatories (e.g., CLF vs. SFS, ASP vs. 
CNB) and the inversion of the yD variations between observatories located in different hemispheres (e.g., CLF vs. 
CNB). This implies that the combined filter output from the 24, 12, 8 and 6 hr filters are the major contributors 
to the Sq currents.

While the overall day-side patterns of xD and yD are clearly related to the Sq currents, some specific details in 
Figure 6 demand further discussion. When useful and applicable, we refer to additional stations which can be 
found in Supporting Information S1. First, xD of CLF and CNB, and to a lesser extent yD, show some remnant 
activity in the night-side, which is in contrast to stations located closer to the equator (SFS and ASP). This feature 
is also observed for stations over Northern America and Northern Asia (see Supporting Information S1). The 
night-side enhancements may be related to the closer proximity of the stations to the auroral electrojets. These 
currents essentially flow azimuthally (i.e., affecting mainly the magnetic X component), increasing in intensity 
during summer and are modulated by substorm activity with recurrence rates of about 2–4 hr (Smith et al., 2017). 
Nevertheless, the level of night-side activity remains generally very weak (below 5 nT), as expected for quiet 
days. For disturbed days, this activity is enhanced as seen on Figures 4 and 5.

On the day-side, yD is remarkably stable from one station to the other, having opposite signs between hemi-
spheres. For all stations, the intensification is phased with season, being higher during summer when solar illumi-
nation is stronger. The activity follows the local sunrise smoothly, but decreases drastically before sunset, around 
15 hr LT, at least in NH. While it is easy to understand that solar illumination is the primary factor triggering 
the Sq current flow by enhancing locally neutral winds and electron density, it is less evident why the current 
should decrease before sunset. As for the neutral atmosphere, we looked at various critical parameters given by 
empirical state-of-the-art models during the same very quiet periods, such as neutral winds (HWM-14, see Drob 
et al. (2015)), neutral densities, temperature and pressure (NRLMSISE-00, see Picone et al. (2002)). No relation-
ship between the variations of these parameters and the observed constant decrease around 15 hr LT was evident. 
This analysis was conducted with empirical models which may explain the difficulty to correlate the Sq magnetic 
variations with thermospheric parameters. More investigations on this topic are necessary and could invoke some 
kind of saturation of the atmosphere.
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Whereas yD has a clear pattern, xD shows a more complex day-side behaviour. The X component of the Sq current, 
and thus the xD filter, indicates the position of the observatory with respect to the current cell's focus location. 
For an ideal current cell with a circular shape, a negative (positive) xD component indicates that the station is 
located  above (below) the focus. When xD is close to zero, the station is beneath the cell's focus. A stable pattern 
with smooth variations in xD (apart from the expected decrease of the activity during winter when solar illumi-
nation decreases) is observed for stations located far of the Sq current cell focus (for examples see Supporting 
Information S1 SEA for: MMB and PHU over Asia, FRD and SJG over North America, WNG and GUI over 
Europe, KDU over Australia). However, stations South of the Sq current focus in Europe show less smooth and 
stable patterns with respect to SJG and PHU. This may be related to the tilted position of the magnetic equator, 
deforming the southern part of the Sq cell. Stations close to the Sq cell focus show a more complex pattern, 
particularly for CLF, SFS (and KNY in Supporting Information S1) in NH and ASP and CNB in SH. First, the 
overall xD component is weaker, confirming the proximity of the Sq cell focus. Second, variations of the mini-
mum/maximum of xD in local time with respect to season reflects variations either of the Sq focus position and/
or of the Sq cell shape and size (Stening, 2008; Stening et al., 2007).

As shown by Yamazaki et  al.  (2011), the local time of the cell's focus shifts to earlier times during summer 
compared to winter months, which is in agreement with the morning shift of the minimum occurrence of xD 
observed at CLF and CNB (see blue feature of xD in Figure 6), situated at slightly higher latitudes than the Sq 
focus. CLF is closer to this Sq focus than CNB, as its minimum almost disappears during winter. This may be an 
indication that the Sq focus also moves to higher latitudes during winter and that the Sq cell almost disappears 
(which is in agreement with Soloviev et al.  (2019)). This behaviour is also confirmed at SFS, when between 
summer and fall equinox, a minimum is followed by a maximum, showing that the Sq focus is likely to be 
very close to SFS and moves from above to beneath the focus during the course of a day, as proposed by Anad 
et al. (2016). This behaviour is also seen at KNY and less clearly at TUC (see Supporting Information S1). The 
xD component at ASP behaves similarly to SFS, but presumably never crosses the Sq focus during summer, since 
no real minimum is observed during morning hours.

A last intriguing feature is observed in yD just before sunrise during local winter, when a local minimum is 
observed at CLF and SFS and a local maximum at ASP and CNB (see again Figure 6). This behaviour is difficult 
to explain from the Sq current cell system alone. Considering the possibility of inter-hemispheric field-aligned-
currents (IHFACs), as analysed by for example, Olsen (1997) and Park et al. (2011), such currents should flow 
at dawn. As Shinbori et al. (2017) stated, the Y component of the magnetic field is the most susceptible to be 
perturbed by the presence of IHFACs. Thus, this local minimum/maximum before sunrise could encompass 
magnetic variations associated with such dawn IHFACs. The dawn minimum is fainter above North America (see 
Supporting Information S1), which is consistent with the findings of Lühr et al. (2015), that IHFACs are more 
intense above Europe and almost disappear above North America. Again, the level of activity of this feature is 
low. The xD component also has a local maximum centred just after sunrise during local winter at ASP, SFS, CNB 
(and KNY). The cause of this structure still remains unclear but may also be related to such IHFACs.

Overall, it is clear from this section that xD and yD capture the Sq current cell properties well.

4.3. Day-To-Day Variability

Figures 7 and 8 demonstrate a non-negligible day-to-day variability of the combined filter outputs xD and yD 
which is more pronounced during summer. This phenomenon has been observed in the majority of physical and 
electro-dynamical parameters of the ionosphere for more than 40 years and is well documented for Sq currents in 
the literature (see e.g., Brown and Williams (1969); Greener and Schlapp (1979); Schlapp (1968); Takeda (1984); 
Yamazaki and Maute (2016)). Simulations from Yamazaki et al.  (2016) showed that variations within the Sq 
current can be attributed to 75% to solar illumination and to 25% to atmospheric and magnetospheric drivers. 
Forbes et al. (2000) found that around 25%–30% of the plasma peak density variations in the 1–2 hr to days range 
in the F-region can be attributed to meteorological phenomena. The day-to-day variabilities found in our study are 
in the order of 20%–30% for the amplitude of xD and yD, which is consistent with these previous studies. Addition-
ally, the results presented in Figure 8 reveal two intriguing properties of the day-to-day variability:

•  The occurrence in local time of the maxima and minima, as well as the delay among them has a clear depend-
ency on season.
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•  The spread of the amplitude is clearly dependent on season.

Our analysis minimises magnetospheric influences by taking into account only very quiet magnetic conditions. 
However, on such quiet days, solar flares may still occur and disturb the signal. To investigate on this, we excluded 
all quiet days on which X and M class solar flares were recorded during daylight hours and re-ran our analysis. 
Expectably, the percentages of day-to-day variability did not change significantly. Flares can have very strong 
effects on the ionospheric ionization and thus on the associated currents, but their influences are only present for 
a very limited time (Liu et al., 1996).

These considerations lead us to conclude that the majority of the observed day-to-day variability may be attrib-
uted to atmospheric drivers only, which underlying processes become stronger with increasing solar illumination, 
confirming the neutral atmosphere as a key role.

Gravity waves and tides within the neutral atmosphere are known to exhibit complex interference behaviour that 
can drastically change from 1 day to another (Liu et al., 2018; Stening et al., 2005). For example, the lunar tide 
induced by the revolution of the moon around Earth has a period of 12.4 hr which is very close to that of the solar 
semi-diurnal one. The small difference in period may lead to a smooth drift of the contributions of xD and yD, 
leading to amplification or reduction of the global signal over a course of a few days. Attempts to model such a 
lunar tide effect did not reproduce the variations of amplitude within the combined daily contributions xD and yD. 
This tends to conclude that several sources of tides and waves are involved in this phenomenon which remains 
challenging to model.

5. Comparison of Baselines During Magnetically Quiet Days
On days without major external influences, the magnetic field measurements follow regular daily variations 
that Bartels et al. (1939) describes as a to-be-expected smooth curve which philosophy persists till the present 
day. This definition implies that there is no quantitative way to evaluate the performance of baselines. We can, 
however, compare our baseline with existing and widely accepted counterparts like the FMI method and Super-
MAG method. The mentioned PC index and IMAGE methods are designed for polar stations and auroral Scandi-
navian magnetometers respectively and thus are out of range for low- and mid-latitudes considered in this work.

To determine the baseline, the FMI method performs a 5th degree harmonic fit to hourly means, which are deter-
mined taking into account apriori information such as magnetic latitude and local time (Sucksdorff et al., 1991). 
The original software written in C is made available through the long-term ISGI repository. The method used 
by the SuperMAG service consists of determining its own field orientation, followed by a daily baseline, annual 
trend and residual offset that differs for each of the magnetic field vector components (Gjerloev, 2012). Their 
baseline data is not directly accessible and several steps had to be executed to make them available for this 
work. SuperMAG provides the actual and baseline removed data in a magnetic local frame that uses an arbitrary 
declination. In order to compare them to the original data as provided by observatories from INTERMAGNET, 
SuperMAG data needs to be transformed to the local geographic frame first, followed by subtracting the baseline 
removed data from the measurements in order to retrieve the baseline. Hereafter we compare our method to the 
FMI method, referred to as xK, yK; and to the SuperMAG method, referred to as xS, yS. As such, Figure 9 demon-
strates our baseline (red) in comparison with the X, Y components (grey), the FMI (blue) and the SuperMAG 
(green) baselines, whereby grey shaded time intervals indicate non-CK48 days.

During magnetically quiet days (white background), our and FMI baselines closely follow the magnetic activity, 
capturing the day-to-day variability smoothly and showing little discrepancies between them. The SuperMAG 
baseline xS, yS shows some distinct differences, especially for the X component. The actual measurements are not 
always followed closely, for example, there is a clear positive and negative offset between the magnetic observa-
tory data and SuperMAG estimation of the quiet baseline for the X component during the afternoon/night of 10 
and 13th December. In general, the SuperMAG method follows a rather steady pattern showing minor differences 
from 1 day to another. As shown before, there is a non-negligible day-to-day variation within the signal, which 
is most likely induced by atmospheric drivers. These variations are well captured by xB, yB and xK, yK, but less 
with xS, yS indicating that it may tend to overestimate magnetospheric drivers during quiet days. To be able to 
qualitatively compare baselines, we calculate the difference between ours and each of the two other methods 
for all CK48 days of 2009. We make the simple assumption that this difference can be described by a Gaussian 



Journal of Geophysical Research: Space Physics

HABERLE ET AL.

10.1029/2022JA030407

13 of 16

distribution, using its variance to quantify deviations. For the X component, we find a variance of 1.6 nT, and for 
the Y component 1.7 nT between our baselines and the FMI ones; and 6.2 nT, and 4.6 nT between our baselines 
and SuperMAG ones. This implies that our determination of baselines can be used instead of the FMI method 
without causing major changes in the baseline reconstruction during magnetically quiet days. Additionally, the 
filtering method produces baselines without any further information than the magnetic measurements them-
selves, whereas the FMI method needs the magnetic latitude as an input, which is evolving over time and not 
trivial to be determined in real-time. This property gives the filtering method the main advantage of being directly 
applicable, that is, as soon as the geomagnetic field data is available.

Giving a detailed analysis of our filtering method during disturbed magnetic periods would far exceed the scope 
of the present paper. However, we would like to add a few thoughts on the application of our method during 
non-quiet days. During non-CK48 days, indicated by the grey shaded area in Figure 9, clear differences between 
all three baseline methods are evident. Our filter method follows the activity very closely, including the depres-
sion and the following fluctuations on 14th December. These features are followed to a lesser extend by the 
FMI method. Contrarily, the SuperMAG baseline is insensitive to any of these storm effects in this example and 
follows a smooth curve from the last quiet day to the next quiet day. This may suggest that our filter and the FMI 
methods underestimate, whereas the SuperMAG may overestimate the actual storm activity and its effects. The 
implication for our filter approach is, that it is not directly applicable during disturbed periods, and thus quiet 
and storm time need to be treated separately (which is true for the SuperMAG and IMAGE methods as well). 
The discrimination between quiet and disturbed periods may be done by statistical measures, as has been done 
by Gjerloev (2012) and Van De Kamp (2013), and by additionally taking into account dependencies on season or 
solar activity. Furthermore, the fact that there is no quantitative way to validate quiet curves remains especially 
true during storm times. For example, in Figure 9 the SuperMAG baselines xS and yS during the two disturbed 
days are very similar to their quiet curve of the preceding day, which can be interpreted physically as a fully 
developed Sq current cell. However such a full system does not necessarily form during a disturbance event (Le 
Huy & Amory-Mazaudier, 2008) which may be even the case in this example, as the actual measurements are 
very different from the expected Sq current signature.

Another important observation is that signatures of storms, are also contained within the long-term filter as 
described in Section 4.2. This shows that all level of filters can be strongly modified during non-quiet periods, 
making our filter baseline not directly applicable outside quiet periods.

Future work will address the application of our filter method baseline for magnetically disturbed periods, focus-
ing on the aforementioned considerations.

Figure 9. Comparison of baseline methods. The methods of the introduced baseline (red), Finnish Meteorological Institute (blue) and SuperMAG (green) for X, Y 
components (grey) at Chambon-la-Forêt during winter 2002 are presented. The grey shaded areas indicate non-CK48 days.
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6. Conclusion
This paper introduces a method to directly determine baselines of geomagnetic field measurements during 
magnetically quiet periods in low- and mid-latitudinal regions. The method is based upon signal filtering tech-
niques to extract long-term (with periods above 36 hr) and (sub-) diurnal (with periods of 24, 12, 8 and 6 hr) 
variations within the time-series of each magnetic component.

We conducted an exhaustive analysis of the contribution's variations, relating it to physical sources that are known 
to constitute the quiet geomagnetic field. The long-term filter includes the contributions induced by the secular 
variation, as well as tidal effects. The combined diurnal contributions have a strong dependency on local time and 
season and show the typical day-to-day variability which lets us confirm that the Sq current system is strongly 
modified by the underlying atmosphere. Furthermore, the results for the day-to-day variability as extracted by the 
filtering technique suggest that the amplitude and its spread around an expected value, as well as the occurrence 
of extrema, have a clear seasonal dependency. The filtering technique provides promising preliminary results and 
may be used for more thorough analysis of quiet Sq current systems in future works.

The baseline is then made up of the superposition of the long-term and the combined daily contributions. During 
magnetically quiet conditions our filter baseline smoothly follows the variations in the X and Y component. It 
produces remarkably similar baselines as the ones calculated with the FMI method with the advantage of not 
needing apriori information. We conclude that our approach characterises the quiet magnetic field well and is 
suitable to be used during magnetically quiet periods. The filtering method tends to follow the activity very 
closely, risking to under-estimate potential storm effects and thus is not directly applicable during magnetically 
disturbed periods.

As the introduced filtering method is a standard signal-treatment approach that does not need any apriori informa-
tion for its application, it is directly applicable to any magnetic observatory in low and mid-latitudes independent 
of the time period. Therefore, the limiting factor for its real-time application is the discrimination of quiet versus 
non-quiet periods and the determination of the baseline during non-quiet periods. Once these challenges are over-
come, it has the capability of being used in (near) real-time applications that make use of low- and mid-latitude 
magnetic observatories, like space weather severeness estimations and index derivations.

Data Availability Statement
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