

From SPRING to SUMMER : design, definition and
implementation of programming languages for string
manipulation and pattern matching
Citation for published version (APA):
Klint, P. (1982). From SPRING to SUMMER : design, definition and implementation of programming languages
for string manipulation and pattern matching. [Phd Thesis 2 (Research NOT TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1982

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Sep. 2024

https://research.tue.nl/en/publications/6f472ff9-4c44-4c33-996e-cdb37d569365

From SPRING to SUMMER

Design, Definition and lmplementation
of Programming Languages for

String Manipulation and Pattern Matching

Paul Klint

From SPRING to SUMMER

Design, Definition and lmplementation
of Programming Languages for

String Manipulation and Pattem Matching

From SPRING to SUMMER

Design, Definition and lmplementation
of Programming Langgages for

String Manipulation and Pattem Matching

PROEFSCHRIFT

ter verkrijging van de graad van doctor in de
technische wetenschappen aan de Technische

Hogeschool Eindhoven, op gezag van de rector
magnificus, prof.irJ. Erkelens, voor een

commissie aangewezen door het college van
dekanen in het openbaar te verdedigen op

dinsdag 30 maart 1982 te 16.00 uur

door

Paul Klint

geboren te 's Gravenhàge

Dit proefschrift is goedgekeurd
door de promotoren

Prof.dr. F.E.J. Kruseman Aretz

en

Prof. H. Whitfield, b.s., d.i.c.

© 1982 by Paul Klint, The Netherlands.

Printed at Mathematical Centre, Amsterdam.

CONTENTS i

SUMMARY v
SAMENVATTING vii
ACKNOWLEDGEMENTS x

CURRICULUM VITAE xi

CONIENTS

PART 1: From SPRING to SUMMER

1. INTRODUCTION 3

l.I. Subject of this thesis 3
1.2. Basic operations on strings 5
1.3. Why are string processing languages special? 8

1.3.1. Bookk:eeping 8
1.3.2. Recognition strategy 9
1.3.3. Faiture handling JO
1.3.4. Existing languages and string processing 11

1.4. Problems in string processing languages 12
1.4.1. A short introduetion to SJ':{OBOL4 12
1.4.2. Compound patterns 13
1.4.3. Side-effects during pattem matching 14
1.4.4. Problems with the SNOBOL4 approach 16

1.5. A checklistforstring processing languages 16

1.5.1. Treatment of the subject 17
1.5.2. Recognition strategy 17

1.6. Relerences for Chapter I 17

2. AN OVERVIEW OF THE LANGUAGE SPRING 19

2.1. Introduetion 19
2.2. Expression evaluation and control structures 19
2.3. Values and variables 20
2.4. Blocks 20
2.5. Pattems 24
2.6. Some examples 26
2.7. SPRING in retrospect 27
2.8. References for Chapter 2 28

i '

ü CONTENTS

. 3. DESIGN CONSIDERATIONS FORSTRING PROCESSING LANGUAGES 29

3.1. Introduetion 29
3.2. Some representative pattem matching functions and operators 29
3.3. Description methods for pattem matching 30

3.3.1. Patterns defined by sets of strings 31
3.3.2. Patterns defined by algebraic transformations 31
3.3.3. Patterns defined by recursive coroutines 32
3.3.4. Patterns defined by operational semantics 33

3.4. A comparison of two backtracking models 33

3.4.1. Common definitions for the two models 33
3.4.2. The immediate/conditional model 35

3.4.2.1. Overview 35
3.4.2.2. Formal description 38

3.4.3. The recovery model 43

3.4.3.1. Overview 43
3.4.3.2. Formal description 45

3.5. Unüication of pattem and expression Ianguage 48
3.6. Relerences for Chapter 3 49

4. AN OVERVIEW OF THE SUMMER PROGRAMMING LANGUAGE St

4.1. Introduetion 51
4.2. Success-directed evaluation and control structures 51
4.3. Recovery of side-elfects 54
4.4. Procedures, operators and classes 55
4.5. A pattern matching extension 58

4.5.1. String Pattem Matching 58
4.5.2. Generalized pattem matching 60

4.6. Related work 61
4.7. References for Chapter 4 61

5. PORMAL LANGUAGE DEFINITIONS CAN BE MADE PRACTICAL 63

5.1. The problem 63
5.2. The metbod 64

5.2.1. Introduetion 64
5.2.2. SUMMER as a metalanguage 65
5.2.3. Semantic domains 66
5.2.4. Evaluation process 67
5.2.5. Some examples 71

5.2.5.1. If expressions 71
5.2.5.2. Variabie declarations 72
5.2.5.3. Blocks 73

5.3. Assessment 74
5.4. References for Chapter 5 76

·cONTENTS

6. IMPLEMENTATION 77

6.1. Introduetion 77
6.2. The SUMMBR Abstract Machine 78

6.2.1. Failure handling 83
6.2.2. Side-effect recovery 84
6.2.3. Operations on classes 85

6.3. Compiler 86
6.4. Relerences for Chapter 6 87 ·

7. EPILOGUE 89

7.1. Looking backward 89

7 .l.I. SUMMER as a Ianguage 89
7 .1.2. The SUMMER implementation 90
7.1.3. Use of a formal definition 90

7.2. Looking forward 91
7.3. Relerences for Chapter 7 92

PART D: SUMMER Relerenee Manual

PREFACE FOR PART 11 95

8. PRELIMINARIES TO THE DEFINITION OF SUMMER 96

8.1. Syntactic considerations 96
8.2. Lex.ical considerations 97
8.3. Semantic considerations 98

8.3.1. Description metbod 98
8.3.2. SUMMBR as a metalanguage 99
8.3.3. Semantic domains 101
8.3.4. Evaluation process 106

8.4. Features not specified in the definition 109
8.5. Relerences for chapter 8 109 ·

9. A SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL 110

9.1. Declarations 110

9.1.1. Summer program 110
9.1.2. Variabie declarations 112
9.1.3. Constant declarations 113
9.1.4. Procedure and operator declarations 114
9.1.5. Class declarations 115
9.1.6. Operator symbol declarations 119

ili

iv CONTENTS

9.2. Expressions 110

9.2.1. Constants 111
9.2.2. ldentifiers and procedure calls 122
9.2.3. Return expressions 127
9.2.4. If expressions 129
9.2.5. Case expressions 131
9.2.6. While expressions 133
9.2.7. For expressions 134
9.2.8. Try expressions 136
9.2.9. Scan expressions 138
9.2.10. Assert expressions 139
9.2.1 I. Parenthesized expressions and blocks 140
9.2.12. Array expressions 141
9.2.13. Table expressions 144
9.2.14. Field selection 146
9.2.15. Subscription 150
9.2.16. Monadic expressions 151
9.2.17. Dyadic expressions 152
9.2.18. Constant expressions 156

9.3. Miscellaneous functions used in the formal definition /57

9.3.1. The function dereference 157
9.3.2. The function equal 158
9.3.3. The functions substring and string_equal 158

10. THE SUMMER LIBRARY 159

10. I. Introduetion 159
10.2. Class integer 159
10.3. Class real 161
10.4. Class string 163
10.5. Class array 167
10.6. Class interval 171
10.7. Class table 171
10,8. Class scan_string 173
10.9. Class file 178
10.10. Class bits 179
10.11. Miscellaneous procedures 180

I I. SOME ANNOTATED SUMMER PROGRAMS 182

11.1. Introduetion 182

11.2.1. Word tuples 182
11.2.2. Flexible arrays 185

12. SUMMARY OF SUMMER SYNTAX 190

INDEX FOR PART 11 193

V

SUMMARY

Written text is an essential element in our culture and various technical means
have been invented to aid in its production. ' Paper and pencil, the typewriter and the
typesetter are examples of such inventions.

Continuing this same line of development, computers are nowadays being used
to alleviate the writing task. Computerized text processing systems (ranging from
word processors for writing and editing simpte texts to fully automated newspaper
and hook printing systems) are rapidly penetrating into all areas of human activity
where written text is the primary means of communication. ·

Historically, the impetus bebind the development of computers bas always been
primarily numerical in nature. This is redected in the design of most computers and
programming languages. However, the increasing use of computers for text process­
ing and other non-numeric tasks makes the p~ely arithmetic design obsolete.

This thesis concentrates on the programming language aspects of computerized
text handling and, to be more precise, on the design and implementation of string
processing languages. The term 'string processing' refers to the process of inspecting,
modifying and transforming texts, i.e. sequences of symbols. It oomprises such seem­
ingly disparate activities as text editing, transforming a text with embedded tormatting
directives into a finallayout, and compiling a souree program into a string of machine
instructions.

A more or less chronological account is given of attempts to solve some of the
problems in string processing languages. First of all, two exercises in designing appli­
cation oriented programming languages are described. This bas resulted in the
languages SPRING and SUMMER. The lessoos learned from the design and use of
SPRING have been incorporated in SUMMER. l'l ext, an exercise in the format definition
of the semantics of programming languages is described. The definition and imple­
mentation of SUMMER together constitute the final result of the project.

This thesis consists of two parts. Part I traces the bistorical development in
detail and consists of cbapters 1 through 7 .. Part II is devoted to the definition of
SUMMER and consists of cbapters 8 through 12. The contents of the thesis are now
briedy summarized.

Chapter I is introductory and gives the necessary motivation and background
for the study of string processing languages. ,

Chapter 2 sketches the language SPRING, a first attempt to design a string pro­
cessing language. SPRING may be characterized as a big language, i.e. it provides a
large number of language primitives for solving problems in its envisaged application
areas. Attention is drawn to undesirable language features resulting from seemingly
logical design choices. Many problems and : questions discussed in Chapter I were
identified as such during this effort.

Chapter 3 is devoted to general design considerations for string processing
languages and compares the semantics of varibus pattem matching models. Attention
is paid to different forms of side-effects during a pattem match. This is done by giv­
ing an operational, format definition of the semantics of the various models. As a
result of this, a new pattem matching mOdel based on side-effect recovery is
developed.

vi SUMMARY

Chapter 4 gives an overview of the language SUMMER, a second attempt to
design a ·string processing language. SUMMER may be characterized as a small
language, i.e. it consists of a relatively smalt set of primitive operations together with
a modest extension mechanism.

Chapter 5 concentrates on the problem of finding a metbod for format language
definition that is suitable for the designers as well as the implementors and users of a
language. An improved metbod for the operationat definition of programming

· language semantics is developed and the result of apptying this metbod to SUMMER is
illustrated.

Imptementation issues are discussed in Chapter 6. The SUMMER compiler and
run-time system ate described insome detail. ·

Chapter 7 conetudes the first part of this thesis with an evatuation of the
research described in it and suggestions for further research.

Part II is devoted to the definition of the SUMMER programming language. 1t
provides both a format and informatlanguage definition and tutorial examples.

In Chapter 8 the techniques and notationat conventions that are used in the
definition are introduced. Much attention is paid to the metbod used for the formal
definition of the sernantics of SUMMER. ·

Chapter 9 contains a semi-format definition of the SUMMER kernel. This is a
small subset of the language on which a semantic definition of the whole language can
he based. The description of each language feature consists of its syntax, an informal
as well as a format definition of its semantics, and examples.

In Chapter 10 the kemel is extended with useful data types and associated
operations, such as reals, arrays, tables, files, bit strings, etc.

Some complete, annotated SUMMER programs are presenled in Chapter 11.

Finally, a summary of the syntaxis given in Chapter 12.

Readers who are only interested in getting a general impression of the language
SUMMER may confine themselves to Chapter 4 and the annotated examples in Chapter
11. Readers who are not interested in the format definition of the language may skip
Chapter 8 (except Sections 8.1 and 8.2), and all subsections of Chapter 9 entitled
'Semantics'.

vü

SAMENV A ITING

Geschreven tekst vormt een essentieel element in onze cultuur en het wekt dan
ook geen verbazing dat verschillende technische hulpmiddelen uitgevonden zijn om
het produceren van geschreven tekst te vereenvoudigen. Potlood en papier, de
schrijfmachine en de zetmachine zijn voorbeelden van dergelijke uitvindingen.

Als voortzetting van deze lijn van ontwikkeling worden computers tegenwoor­
dig gebruikt om het produceren van geschreven tekst te vereenvoudigen. Geautoma­
tiseerde tekstverwerkende systemen (van 'word processors' voor het schrijven en redi­
geren van eenvoudige teksten tot volledig ' geautomatiseerde systemen voor . het
drukken van kranten en boeken) dringen momenteel door in allerlei gebieden waar
het geschreven woord het voornaamste communicatiemiddel is.

Historisch gezien is de ontwikkeling van computers altijd in hoge mate bepaald
door de behoefte om veel en snel te kunnen rekenen. Dit heeft zijn weerslag gevon­
den in het ontwerp van de meeste computers en programmeertalen. Door het
toenemend gebruik van computers voor tekstverwerking en voor de oplossing van
andere, niet numerieke, problemen raken de oorspronkelijke, hoofdzakelijk op rekenen ·
gerichte ontwerpen verouderd.

Dit proefschrift is gewijd aan de programmeertaalaspecten van geautoma­
tiseerde tekstverwerking en in het bijzonder aail het ontwerp en de implementatie van
'stringmanipulatietalen'. Dit zijn programmeettalen die gebruikt kunnen worden bij
het bouwen van tekstverwerkende systemen. Onder stringmanipulatie wordt hier ver­
staan het inspecteren of wijzigen van rijen 'symbolen'. In het geval van tekstverwer­
king zal men als symbolen kiezen de letters, cijfers en leestekens waaruit een te behan­
delen tekst bestaat. Men kan ook andere basissymbolen kiezen om anderssoortige
problemen op te lossen.

Een min of meer chronologisch overzicht wordt gegeven van pogingen om
enkele problemen die zich in bestaande stringmanipulatietalen voordoen op te lossen.
Het beschreven onderzoek omvat allereerst , twee exercities op het gebied van het
ontwerp van toepassingsgerichte programmeertalen. Dit heeft geleid tot het ontwerp
van de talen SPRING en SUMMER. De lessen die geleerd zijn bij het ontwerp en het
gebruik van SPRING zijn verwerkt in het ontwerp van SUMMER. Het beschreven' onder­
zoek omvat verder een exercitie op het gebied van het formeel definiëren van de
betekenis ('semantiek') van programmeertalen. Definitie en implementatie van de pro­
grammeertaal SUMMER vormen tenslotte het feitelijke eindproduct van dit onderzoek.·

Dit proefschrift bestaat uit twee delen. Deel I volgt de ontwikkeling van het
onderzoek op de voet en bestaat uit de hoofdstukken I tlm 7. Deel 11 vormt het
eindprodukt van het onderzoek en bestaat uit hoofdstukken 8 tlm 12. De inhoud
wordt hieronder kort samengevat.

Hoofdstuk 1 is een inleiding op het onderwerp en geeft de noodzakelijke
motivering en achtergrond voor de studie van stringmanipulatietalen.

Hoofdstuk 2 schetst de programmeertaal SPRING, een eerste poging tot het
ontwerpen van een stringmanipu1atietaal. SPRING is een nogal omvangrijke program­
meertaal die een groot aantal ingebouwde operaties bevat om problemen op het
gebied van tekstverwerking op te lossen. In dit hoofdstuk wordt gewezen op een aan­
tal ongewenste eigenschappen van deze taal die voortkomen uit ogenschijnlijk logische

vili SAMENVATriNG

ontwerpkeuzen. V eet van de problemen en vragen die in het eerste hoofdstuk aan de
orde komen werden tijdens dit onderzoek als zodanig onderkend.'

Hoofdstuk 3 is'gewijd aan algemene ontwerpoverwegingen voor stringmanipula­
tietalen en aan een vergelijking van de werking van 'patroonherkennings' -modellen.
Patroonherkenning is een methode die dient om vast te stellen of een tekst bepaalde
eigenschappen heeft. zoals 'is korter dan 83 tekens', of 'bevat het woord "heks"'. Bij
deze vergelijking wordt aandacht besteed aan verschillende vormen van neveneffecten
die kunnen optreden tijdens een patroonherkenningsoperatie. Als resultaat van deze
analyse wordt een nieuw patroonherkenningsmodel gepresenteerd dat een elegante
besturing van het al dan niet ongedaan maken van neveneffecten mogelijk maakt.

In hoofdstuk 4 wordt een overzicht gegeven van de programmeertaal SUMMER,

een tweede poging tot het ontwerpen van een stringmanipulatietaal. SUMMER is een
vrij 'kleine' programmeertaal die bestaat uit een relatief kleine kern van primitieven
voor tekstverwerking, naast een uitbreidingsmechanisme om toepassingsgerichte
operaties te definiëren.

In hoofdstuk 5 staat de vraag centraal hoe de semantiek van een programmeer­
taal op dusdanige wijze formeel beschreven kan worden dat zowel de ontwerpers als
de implementatoren en gebruikers van een taal, met succes van een dergelijke formele
beschrijving gebruik kunnen maken. In dit hoofdstuk wordt een verbeterde methode

· voor de operationele definitie van de semantiek van programmeertalen ontwikkeld en
wordt de toepassing daarvan bij het definiëren van SUMMER geillustreerd.

In hoofdstuk 6 wordt de implementatie van SUMMER beschreven.

Hoofdstuk 7 besluit het eerste deel van dit proefschrift door de resultaten van
het onderzoek samen te vatten en door enkele richtingen voor voortgezet onderzoek
aan te geven.

Deel IJ is gewijd aan de definitie van de programmeertaal SUMMER. Het bevat
zowel een informele als een formele definitie van de taal en geeft enkele uitgewerkte
voorbeelden.

In hoçfdstuk 8 worden de techniek en de notatie uiteengezet die in de definitie
gebruikt worden. De feitelijke definitie-methode krijgt hierbij veel aandacht.

Hoofdstuk 9 bevat een semi-formele definitie van een 'kern' van SUMMER. Deze
kern is een klein deel van de taal dat voldoende is om de rest van SUMMER in te
beschrijven. De definitie van iedere taalconstructie bestaat uit een beschrijving van
zijn vorm, een informele en formele definitie van zijn betekenis, en voorbeelden.

In hoofdstuk lO wordt de kern van SUMMER uitgebreid met een aantal nuttige
datatypen met bijbehorende operaties, zoals reële getallen, arrays, associatieve geheu­
gens, databestanden, enzovoorts.

Een aantal volledige, geannoteerde, SUMMER programma's wordt in hoofdstuk
11 gepresenteerd.

Hoofdstuk 12 bevat tenslotte een overzicht van de syntax van SUMMER.

, Lezers die alleen een globale indruk van de taal SUMMER willen krijgen kunnen
zich beperken tot hoofdstuk 4. Lezers die niet gefuteresseerd zijn in de formele
definitie kunnen hoofdstuk 8 overslaan (met uitzondering van de paragrafen 8.1 en
8.2), evenals alle paragrafen van hoofdstuk. 9 met als titel 'semantics'.

ix

ACKNOWLEDGEMENTS

The research reported in this thesis was conducted while .the au.thor was
employed at the Mathematical Centre in Amsterdam.

Several people contributed to this elfort

Design and implementation of both SPRING and SUMMER were done in close
cooperation with Marleen Sint. Contributions. to the design of SUMMER were made by
Jan Heering. Their enthusiasm, patience and friendship were essential to the success
of these projects.

Jan Heering, Marleen Sint and Arthur Veen have read drafts of this thesis.
They pointed out various errors and made niunerous suggestions for improving the
style and presentation of it. I am grateful for their support and criticism.

Comments made by Leo Geurts, R.J. Lunbeck, Lambert Meertens and W.L.
van der Poel are gratefully acknowledged.

x

CURRICULUM VITAE

Naam: Klint, Paul.

Geboren:

1967:

8 September 1948, te 's Gravenhage.

Diploma gymnasium fj, V ossius Gymnasium, Amsterdam.

1970: Kandidaatsexamen Natuurkunde, Universiteit van Amsterdam.

1973: Doctoraalexamen Wiskunde, Universiteit van Amsterdam,

1973*heden: Wetenschappelijk Medewerker, Afdeling Informatica, Mathematisch
Centrum, Amsterdam.

Current address of the author:

Mathematisch Centrum
Kruislaan 413
1098 SJ Amsterdam

PART I

From SPRING to SUMMER

t. INTRODUCflON

t.t. Subject of this thesis

Written text is an essential element in our culture and therefore various techni­
ca! means have been invented to aid in its production. Paper and pencil, the type­
writer and the typesetter are examples of such inventions.

Continuing this same line of development, computers are nowadays being used
to alleviate the writing task. Computerized text processing systems (ranging from
word processors for writing and editing simple texts to fuUy automated newspaper
and hook printing systems) are rapidly penetrating into all areas of human activity
where written text is the primary means of coD1munication.

Historically, the impetus bebind the development of computers has always been
mostly numerical in nature. This is reflected, in the design of most computers and
programming languages. However, the increasing use of computers for text process­
ing and for other non-numeric tasks makes the purely arithmetic design obsolete.

This thesis concentrates on the programlning Ianguage aspects of computerized
text handling and, to be more precise, on the design and implementation of string
processing languages. The term 'string processing' refers to the process of inspecting,
modifying and transforming texts, i.e. sequences of symbols. It comprises such seem­
ingly disparate activities as text editing, transforming a text with embedded formatting
directives into a finallayout, and compiling a souree program into a string of machine
instructions.

In motivating the study of string processing languages we shaU first consider
three typical applications for which a string processing language would be a prime
choice as implementation language. At the same time, we shall try to fit the probieros
and language requirements that are typical for string processing applications into a
general scheme. lt is not our intention to contend that the solutions proposed and the'
techniques used are the only ways to solve these problems. There are indeed many
programs that solve them without relying on higher level concepts in their implemen­
lation language. In such programs the metbod of procedural extension is used to
realize higher level concepts. What we do contend, however, is that the concepts pro­
posed bere foUow in a natural way from the various applications.

Typieal application 1: count the frequency of occurrence of all words in a text
and print an alphabetically sorted list of the results. This is a prototype of many sim­
pte editing and text processing problems. A program to perform this task wil1
presumably consist of the modules: Read word, Tally and Sort 8Jld Print.

Read word isolates the next 'word' from the input and fails if no more words
are available. This requires a simple lexical recognition capability to distinguish
letters, digits and punctuation marks. Tally compares the word just read with the
words in a table containing all previously read Words. If the word occurred before, its
frequency is incremented in the table, otherwise a new table entry is created with fre-­
quency set to one. This requires table lookup and automatic storage allocation. Note
that neither the maximum length of a word nor the maximum number of different
words is known in advance. Sort 8Jld Print sorts the table and prints it. This
requires a sorting facility and simpte string synthesis functions to produce output in
tabular form.

4 INTRODUCTION

Typical application 2: format a text containing embedded tormatting directives.
A text tormatting program might contain the modules: Read input, Manage text
streams, Adjust an Hyphenate.

Read :input reads input text and recognizes embedded tormatting directives. In
a simple system, this requires recognition power at the lexical level. More sophisti­
cated systems might support input specifications for the formatting of mathematica}
formulas, tables, block diagrams, etc. In that case more complex patterns must be
recognized in the input text. Manage text streams supervises the output stream.
Various areas in the 'current' output page (like headers, text columns and footnotes)
are usually filled independently. This is implemented most naturally by storing the
information related to them in separate data structures. This requires data structures
allowing their components to grow dynamically. Adjust distributes the spaces embed­
ded in a text line so as to obtain right adjusted margins. This can be done in several
ways and it depends on the particular implementation which language features are
needed. One implementation might, for example, represent a line as a linked list of
words with each word containing a relative distance to the previous word. If the
amount of blank space in a line beoomes too large, Adjust calls Hyphenate. The
latter subdivides words into syllables. Hyphenation is used when a given word fits the
current output line only partially. This requires table lookup in tables with hyphena­
tion prefixes and suffixes or in tables containing words with exceptional hyphenation
points.

Typical application 3: compile a souree program in some programming
language into machine code. The modules Lexical analyzer, Syntax analyzer and
Code generator can be found in most traditional compilers.

A Lexical analyzer reads the input stream character by character and constructs
from these characters the basic symbols (such as integers, identifiers and keywords) of
the programming language. This requires lexicallevel recognition power. The Syntax
analyzer performs the syntactic analysis of the stream of symbols produced by the lex­
ical analyzer. For each type of context-free grammar there exists an associated recog­
nizer and the precise form arid efficiency of such a recognizer depends on the kind of
grammar. Each recognition function should be able to handle the case that its input
string is not recognized, i.e. that the recognition fails. The output of the syntax
analyzer is the parse tree that corresponds to the souree program. The construction
of parse trees requires dynamically allocated data structures. The Code generator
transforms parse trees into executable machine code. The requirements depend in this
case on the particular implementation metbod chosen.

Before embarking on yet another effort to design a programming language it is
worthwhile to answer the question as to how well existing languages satisfy the typical
requirements of string processing or, if they are inadequate in this respect, in what
way they can be extended so as to meet them in a more satisfactory manner. This is
done in Section 1.3 below. As a preparation for this the reader is first, in Section 1.2,
familiarized with some basic notions that are used frequently in subsequent chapters.
Probieros in existing string processing languages are illustrated in Section 1.4 by
means of some SNOBOL4 programs. Section 1.5 contains a list of questions that can
serve as a basis for the evaluation of string processing languages, while at the same
time suggesting the direction of future developments.

This thesis gives a more or less chronological account of attempts to solve some
of the problems in string processing languages. It consists of two parts.

1.1. Subject of this thesis 5

Part I traces the hlstorical development in de~ail. Chapter l is introductory
and gives the necessary motivation and background for the study of string processing
languages.

Chapter 2 is mainly of hlstorical interest and is not essential for understanding
subsequent chapters. It describes the language SPRING, a first attempt to design a
string processing language. SPRING may be characterized as a big language, i.e. it
provides a large number of language primitives for solving problems in its envisaged
application areas. Attention is drawn to undesirable language features resulting from
seemingly logical design choices. Many problems and questions discussed in Chapter
I were identified as such during this effort.

Chapter 3 is devoted to general design considerations for string processing
languages and compares the semantics of various pattem matching models. Attention
is paid to different forms of side-effects during a pattem match. This is done by giv­
ing an operational, format definition of the semantics of the various models; As a
result of this, a new pattem matching model, based on side-effect recovery, is
developed.

Chapter 4 gives an overview of the language SUMMER a second attempt to
design a string processing language. SUMMER may be characterized as a small
language, i.e. it consists of a relatively smalt set of primitive operations together with
a modest extension mechanism.

Chapter 5 concentrales on the problem of finding a metbod for formallanguage
definition that is suitable for the designer as well as the implementors and users of a
language. An improved metbod for tbe operational definition of programrning
language semantics is developed and tbe result of applying this metbod to SUMMER is
illustrated.

Implementation issues are discussed in Chapter 6. The SUMMER compiler and
run-time system are described in some detail.

Cbapter 7 concludes tbe first part of this thesis by evaluating the research
described in it and by outlining several areas for furtber research.

Part 11 contains a complete definition of tbe SUMMER programming language.
It consists of a definition of tbe language (both format and informal), gives examples
of the various language constructs and discusses some annotated programs.

In this thesis we are not concemed witb the social implications of text process­
ing and office automation. The interested reader is relerred to tbe literature for a dis­
cussion of this issue. [Mowshowitz8l] discusses tbe different approaches to the study
of social issues in computing. [Wei.zenbaum76] analyzes the influence of technology
(and in particular computer science) on our society and exposes (mis)conceptions
among computer scientists regarding the tasks tbat can ultimately be delegated to
computers.

1.2. Basic operadons on strings

Agreement is necessary on wbat we shall mean by strings and string processing
before a characterization of string processing languages is possible. A string is
defined as a sequence of string-items (to be defined below), such that:

6 INTRODUCTION

o The sequence is linearly ordered and of arbitrary (finite) size.

o lndividual string-items in the sequence can be selected by means of indexing.
For a sequence of length N, the items in the sequence have indices
0 ~ ... , N 1 respectively.

D An equality relation is defined on the set of string-items. This relation extends
in a natural way to the set of strings.

This definition is deliberately general and does not use any particular property of
string-items, apart from the assumption that an equality relation is defined on the set
of string-items. lt allows, for instance, strings of integers, strings of reals, strings of
strings of integers, and so on. Most of the time, however, we shall be dealing with
strings consisting of characters, i.e. entities corresponding to letters, digits and other
symbols which can be displayed on a printing device. Unless otherwise stated, all
strings are assumed to consist of characters and in the examples literal character
strings wiJl be enclosed in single quotes (like 'metaphysics').

String processing will be understood to encompass the totality of operations to
synthesize and analyze (parse, recognize) strings.

The most primitive operations on strings are coneatenation and substring selec­
tion. A dyadic operator denoted by '11' wiJl be used forstring concatenation; it 'glues'
two strings together. For example,

'meta' 11 'physics'

bas the new string 'metaphysics' as value.

Substring selection extracts a substring from a given string. For example,

substring('metaphysics', 1, 3)

produces the new string 'sic' by extracting a substring of size 3 starting at position 7
froró 'metaphysics'. Remember that the characters in a string have indices
0, I, ... , N -1, where N is the number of characters in the string.

Less primitive recognition operations, as can be found in SNOBOL4, operate on a
single common string ('the subject string') starting at a certain index in that string
('the cursor position'). These recognition operations appear in two varieties. The fust
variety consists of operations and predicates which depend only on the current value
of the cursor. Typical examples are:

D Iocrement the cursor by 7. This operation fails if the resulting cursor is not a
legal index in the current subject string.

D Is the current value of the cursor equal to 37

The second variety consists of operatións and predicates which depend both on
the current value of the cursor and on the characters in the subject string. Examples
are:

o Does 'metaphysics' occur as substring in the subject string, starting at the
current cursor position?

D Can the cursor he moved to the right in such a way that it is only moved past
letters? And if so, which letters?

These operations can either sneeeed if their predicate is true (and perhaps change the
value of the cursor or deliver a value or both) or faü if the predicate is false. These

1.2. Basic operations on strings 7

examples show the need for failure handling in string processing languages (see 1.3.3).

After these preparations, a list of recognition operations follows for reference
purposes. These operations are presented in a more or less abstract form, without
comrnitment to specHic syntactic or semantic details. More detailed descriptions of
these operations will appear in subsequent chapters.

LEN (n) increments the cursor by n (see Figure 1.1) and fails if the new cursor falls
outside the subject string.

LEN(2): 'route 66.'-+ 'route 66.'

î î
1 3

Figure 1.1. Example of LEN.

TAB (n) moves the cursor to index n and faits if that new index falls outside the sub~
ject string (see Figure 1.2). Note, that this operation depends on the specific index
convention chosen.

TAB(1): 'route 66.'-+ 'routè 66.'

î î
I 7

Figure U. Example of TAB.

RTAB(n) moves the cursor to position length(subject)- n 1, where
length (subject) gives the number of characters in the subject string {see Figure 1.3).
The operation fails if the desired cursor position falls outside the subject string.

RTAB(5): 'route 66.'-+ 'route 66.'
î î
1 3

Figure 1.3. Example of R TAB .

POS (n) succeeds if the value of the cursor is equal to n and fails otherwise (see Fig~
ure 1.4).

POS(l): 'route 66.'-+ 'route 66.'

î î
1 1

Figure 1.4. Example of POS.

RPOS(n) succeeds if the value of the cursor is equal to length(subject)- n - 1,
and fails otherwise.

SPAN(S) moves the cursor past the largest number of characters (but at least one),
all of which must occur inS (see Figure 1.5) and fails otherwise. Note that functions

1 f

8 INTRODUCTION

SPAN and BREAK (see below) use their argument string S as a set of acceptable
characters.

SPAN('0123456789'): 'roote 66.' ~'route 66.'

t Î
6 8

Figure 1.5. Example of SPAN.

BREAK(S) moves the cursor (zero or mote positions) to the right until it points to
the first character that occurs in S (see Figure 1.6), and fails otherwise.

BREAK('86420'): 'route 66.' ~'route 66.'

t t
1 6

Figure 1.6. Example of BREAK.

1.3. Why are string processing languages special?

We shall now consider three major aspects of string processing languages in
more detail:

o Bookkeeping. How can a record be kept of the progress of the recognition pro­
cess?

o Reeognition strategies. What is the best metbod to determine the structure of a
given string?

o Failure bandling. What should be done if a string cannot be recognized?

1.3.1. Bc>okkeeping

A general way to formulate many parsing problems is to divide the problem
into a number of reoogoition steps of the form

s ~s'
in which S (the string to be recognized) is mapped on a new string S' on which the
next step operates. In other words, each step delivers a new string value for the next
step to work on, and each step begins its recognition task by looking at the leftmost
character of its input string. An important special case occurs if successive steps
operate strictly from left to right. In that case, all recognition steps operate on sub­
strings of the original input string and each step delivers a tail of its input as result to
the next step. In both the general and the special case, a completely functional (e.g.
LISP-like) formulation of the recognition process can be achieved. This approach is
attractive, but bas several disadvantages, to wit:

o The need to explicitly mention the string on which each step operates bas an
adverse effect on the size of programs.

1.3.1. Book.k:eeping 9

o If one attempts to exploit the special case, only strict left-to-right scanning can
be formulated, since the characters in the initial string that occur left of the
start of each substring are lost.

o It is not easy to imptement the functional model efficiently.

Another way of looking at the recognition process is to assume that there is one
common string on which all operations work starting at different cursor positions.
The form of a recognition step then becomes

<S, C1> ~ <S, Cz>

where S stands for the fixed string to be recognized and C 1 and C 2 stand for the cur­
sor position before and alter the step. This can be expressed by introducing the
notion of a current subject consisting of a string S and a cursor position C in S. All
recognition steps operate on the string S starting at cursor position C. This
approach bas the advantage of obviating the need to mention the subject string expli­
citly each time a new step is performed as well as of providing cursor management.
In other words, the notation is made more concise at the expense of introducing a
globat entity, which acts as 'current focus of activity'.

In order to limit the field of discussion, we. wilt only pursue the second
approach in this thesis. Some consequences of the functional approach can be found
in [Morris80]. As to the choice made, it is interesting to note that it is hard to find a
notion of a 'current focus of activity' in any existing general purpose programming
language.

1.3.2. Recognition strategy

Parsing a string amounts to recognizing some given structure in it. A natural
way of expressing such structures is by means of a grammar. There exist many kinds
of grammar with varying descriptive power (see for example [Aho72]). In practice,
most grammars have an associated algorithm to recognize strings betonging to it. In
the design of a string processing tanguage, a decision must be made regarding the
descriptive power and recognition strategy that will be supported by the language.
One can either restriet the ctass of admissible grammars to those having an efficient
recognition algorithm, or one can allow arbitrary context-free grammars and use a
general, but less efficient parsing method. The latter will be done in this thesis, since
the problems involved are interesting and have only been partially explored. Having
chosen a recognition method, the conciseness of recognition algorithms is, in general,
enhanced by providing a shorthand notation for it. In this way, the details of the
algorithm (like shifting to a new state or reading the next input symbol) can be omit­
ted for each recognition step.

Backtraddog will be used as the recognition metbod for arbitrary context-free
grammars. Backtracking [Golomb65] is a programming technique for organizing
search processes that are based on trial-and-error. lt amounts to imposing a tree­
stroeture on the search space and traversing the tree in a predetermined order. Back­
tracking can be applied to parsing as follows. Initially, it is assumed that a given
input sentence can be derived from the grammar rute

<S> :: =· <f>.

where <S> is the start symbol of the grammar and <r> is the right hand side of the
grammar rule for -;::s>. This assumption can eitb.er be verified in a trivia! way (if <r>

10 INTRODUCTION

is simple, e.g. a terminal symbol of the grammar) or the recognition process must
prepare itself for .the verification of a more complex assumption. To this end, new
assumptions are made that correspond to the constituents. of <r>. If all these
assumptions turn out to be true, the initial assumption was true. If an assumption
turns out to be false, there are two cases:

o There exists an alternative for it. In this case an attempt is made to verify the
alternative. For example, the assumption that an <addition-operator> will
occur in the input sentence may turn out to be true if either a '+' or '-' sym­
bol is encountered.

o There exist no alternatives for the current assumption. In this case, the 'parent'
assumption was false, but it may in its turn have alternatives.

Several subsidiary questions mnst be answered when the particular backtrack­
ing metbod chosen is to be specified completely. A fi.rst question that arises concerns
the order in which alternatives are attempted. A metbod is said to be detenninistic if
the order in which alternatives are attempted is reproducible. In nondetenninistic
methods alternatives are attempted in an arbitrary order. Again, in order to narrow
the field of discussion, we shall restriet our attention entirely to deterministic methods.
A second question to be answered has to do with the moment at which the search
space is established. Is it fixed statically at the start of the search process or can it be
modified dynamically during the search? We shall consider both possibilities. A final
question concerns the precise structure of the search space. Does it have the structure
of a tree, a directed acyclic graph or perhaps even an arbitrary graph? We shall
mostly encounter tree-like structures.

Further aspects of backtracking (as used in SNOBOL4) are discussed in Section
1.4.

1.3.3. Failure handling

The outcome of the entire recognition process is dependent on the outcome of
each individual recognition step. Since each step may discover the subject string to
have an unexpected form, failure handling is an important issue. For each step there
are two possibilities:

o The step succeeds and this fact together with more detailed information (the
recognized part of the subject string, the new cursor value) have to be made
available to subsequent steps.

o The step fails and the kind of failure hjlS to be indicated.

How the success or failure of an individual step affects the overall recognition process,
depends on the particwar recognition strategy chosen.

A short remark on failure handling is appropriate in anticipation of discussions
on this topic in Chapters 2 and 4. When considering the combinations of language
features dealing with failure handling and flow of control, one has the following
choices:

I) Include 'Boolean' val u es in the language, which can be used to remember the
outcome of logical operations, and let the flow of control constructs be depen­
dent on these Boolean values. All recognition functions should then be
Boolean functions; success or failure of each function is delivered as the result
of its invocation and subsidiary results (such as the new cursor value) can then

1.3.3. Failure hamDing 11

be delivered using call-by-reference parameters.

2) Let all 'values' in the language consist of (value, signal)-pairs; the flow of con­
trol constrocts use the signal-part of each value and all other constrocts use the
value-part. The signal-part of a value can thus be inspected at any moment
after the value bas been computed. Since it may be desirabie for the evaluation
of an expression to terminate as soon as one of its subexpressions fails, all
operations in the language should be defined in such a way that they immedi­
ately terminale when one of their arguments is a value containing a signal-part
indicating previous failure.

3) All operations generatea 'failure signál', which is used to drive the flow of con­
trol constructs. In contrast to the previous case, where failure signals can be
remembered for later use, in this case they are transient entities: failure signals
are not part of a value and should be immediately intercepted when they are
generated.

4) Include both Boolean values and a general exception handling mechanism in
the language. The flow of control constructs can then operate on Boolean
values and all other 'abnormal' conditions can be taken care of by the excep"
tion handling mechanism.

Alternative 1) is the obvious choice if recognition functions have to be embedded in a
conventional programming language. lt bas the disadvantage that many additional
iC-statements are required to test the outcome of each recognition function. Alterna­
tive 2) is interesting since it állows differentiation between sourees of failure (by speci­
fying different values in the signal-part) without introducing complicated flow of con­
trol primitives needed for general exception handling. In Chapter 2 we will discuss a
restricted form of an alternative 2) expression evaluation mechanism. Alternative 3) is
a oompromise between expressive power and simplicity: it incorporates exception han­
dling for one kind of exception (failure signals) but does not require complicated flow
of control primitives in the language. This alternative will play an important role in
our studies. Alternative 4) is the most general, but at the same time the most compli­
cated form of expression evaluation. It wil1 not be considered bere to avoid the many
unsolved problems associated with general exception handling. See, for instance,
[Goodenough75] or [Luckham80] fora discussion of this issue.

1.3.4. Existing languages and string processing

By combining the language requirements encountered in Section 1.1 with the
more detailed characteristics of string processing given above, we arrive at the follow­
ing list of language requirements for string processing:

RL Recognition power at the syntactic level. If recognition of arbitrary context­
tree grammars is desired, then some form of backtracking should be available
in the language. The notion of a 'subject string' should be available.

R2. Failure handling, i.e. language constrocts for (restricted) exception handling.

R3. Data structures that can be allocated dynamically and that may grow dynami-
cally.

Other obvious requirements that apply to all kinds of programming languages, such
as modularity and adequate control structures, are taken for granted and will not be
considered here.

12 INTRODUCTION

Two general observations will place these requirements in perspective. First of
all, it should be noted that all envisaged applications could be implemenled using
FORTRAN, assembly language, etc. However, the introduetion of special language
features for string processing can result in a programming language that is much
more suited to string processing applications than other languages that are not
'optimized' for this particular application.

Secondly, one should bear in mind that we have chosen to investigate problerns
related to backtracking. Backtrackins is just another programming technique, but
manifests itself ditferently when integrated with other constrocts in a programming
language. This beoomes particularly clear if side-etfects are taken into account. The
incorporation of backtracking facilities into a programming language makes it possi­
bie to define explicitly the interaction between backtracking and the operations that
may cause side-etfects (e.g. assignment statements). This cannot be achieved if back­
tracking is added on top of an existing programming language by, for example, pro­
cedural extension.

There are also more specific reasons for designing a new Ianguage instead of
choosing an existing one. Only the chief shortcomings of PASCAL [Wirth7l) and
ALOOL68 [VanWijngaarden76] wi1l he discussed bere; a discussion of SNOBOL4 is post­
póned to Section 1.4.

There are five major obstacles to using PASCALforstring processing. First, the
size of PASCAL data structures is fixed statically and this confticts with requirement
R3. Secondly, the programroer bas to be aware of the life-time of some data struc­
tures; these must allocated and de-allocated explicitly. Thirdly, the size of strings is
part of their type, i.e. two strings of different length have different type and cannot,
for example, be assigned to the same variable. Several attempts (see for instanee
[Sale79]) have been made to eliminate this problem, but none seems successful.
Fourthly, it is not easy to incorporate any form of faiture or exception handling into
the language. Finally, backtracking and more specifically the control of side-effects
during backtracking are difficult, if not impossible, to imptement in PASCAL.

There are three major obstacles if one tries to use ALOOL68 for string process­
ing. First, the programroer is responsible for the allocation of objects on the heap.

'This is a nuisance since, typically, procedures: deliver objects that have a Jonger life­
time than the procedure itself and such objects must therefore he explicitly allocated
on the heap. The other two obstacles are the same as the ones mentioned for PASCAL:
the difficulty of imptementing faiture handling and backtracking.

1.4. Problems in string processing languages

There are several problems in existing string processing languages and most of
them are a oonsequence of side-etfects occurring during the recognition process.
TheSe problems wi1l now be illustrated by introducing an absolute minimum of SNO­
BOL4 [Oriswold71] (being the best known string processing language) and by giving
some SNOBOL4 examples that exhibit these problems.

1.4.1. A short introduction to SNOBOL4

In SNOBOL4 the recognition steps are described by a pattem and the recognition
process is called pattem matching. A pattem defines a set of acceptable strings and
acts as a predicate that succeeds or faits when it is presented with a string that is or is

1.4.1. A short introduetion to SNOBOL4 13

not in the set of acceptable strings. A pattem may also perform arbitrary computa­
tions while deciding whether a given string is acceptable or not. The general form of
a SNOBOL4 statement is:

<label> <subject> <pattem> '=' <replacement> <goto>

A <label> identifies a statement and allows other statements to 'jump' to that state­
ment. A <subject> foliowed by a <pattem> indicates the beginning of a pattem
match to determine whether the subject string contains a substring that is in the set of
acceptable strings defined by the pattem. lf so, the matebed substring is replaced by
the <replacement> string and execution proceeds at the statement associated with
success. Otherwise, no reptacement takes place and execution proceeds at the state­
ment associated with failure. The labels of the successor statements for success and
failure are given in the <goto> field. Most parts of a SNOBOL4 statement are
optional. Apart from the two examples that foliow, we shall only consider statements
in which all fields except the subject and pattem field are empty.

Example I:

L X SPAN('0123456789') :S(P)F(Q)

Here, L is the <label>, X is the <subject>, SPAN('OJ23456789') is the <pattern>
and :S(P)F(Q) is the <goto>. The result of executing the above statement is a jump
to label P if the subject string X contains a span of digits or a jump to label Q other­
wise.

Example 2:

L PACT 'multi-lateral' = 'impossible'

Reptaces the first occurrence of the string 'mul ti- lateral' in PA CT by the string
'impossible'. Does nothing if the pattem fails, since no 'failure' label was given in the
<goto> field.

All these pattem matches are unanchored, i.e. the pattem as a whole is
attempted at all cursor positions in the subject string.

1.4.2. Compound pattems

Compound patterns are constructed from primitive ones (i.e. the literal string,
SPAN, BREAK, etc.) by means of pattem coneatenation and pattem alternation. The
construction of compound pattems is performed before the pattem match is started.
This leads to two evaluation moments: pattem construction time and pattem matching

. time.

The concatenation of two patterns P 1 and P2 is written as

P, P2

(i.e. P 1 foliowed by P2 separated by one or morespace characters) This constrocts a
new pattem that wiil apply P 1 foliowed by P 2• Por example,

YEAR 'AD' SPAN('Ol23456789')

succeeds if YEAR contains the string 'AD' followed by digits.

14 INTRODUCTION

The alternation of two pattems P 1 ancJ P 2 is written as

PI I p2

and constrocts a new pattem that will succeed if either P 1 succeeds, or P 1 fails but P2'
succeeds. Por example,

YEAR 'UNKNOWN' I SPAN('Ol23456789')

succeeds if YEAR contains either the string 'UNKNOWN' or a span of digits and

X ('d' 1 'b') 'ea' ('n' I 'r' 1 'd')

will succeed if X contains 'dean', 'dear', 'dead', 'bean', 'bear', or 'bead' as substring.

In fact, compound patterns represent and/or goal-trees (see [Nilsson7l]) and a
pattem match succeeds if (part of) the tree bas been 'traversed successfully'. Figure
1.7 shows the and/or tree corresponding tothelast example.

'd' 'b' 'r' 'd'

Flgure 1.7. And/or goal tree.

If the root of the tree is an 'and' node ,(representing pattem concatenation), all
immedia te subtrees. of the root must have been traversed successfully before the pat­
tern match succeeds. If the root of the tree is an 'or' node (representing pattem alter­
nation), only one immediate subtree of the root must have been traversed successfully
before the pattem match succeeds. In the last case the pattem rnay have untried
altematives, i.e. unattempted immediate subtrees of the root. All. subtrees of an alter­
native node are always attempted starting at the same cursor position.

The tree is traversed by means of backtracking; this is a structured form of
trial-and-error (see 1.3.2). When one attempt to traverse a subtree fails, the aforemen­
tioned untried alternatives may lead to a different. but successful traversal of the tree.

1.4.3. Side-effects durlng pattem matching

The SNOBOL4 patterns introduced so far cannot have side-effects: the valnes of
variables in the program cannot be modilied during the traversal of the tree if only
pattem concatenation and pattem alternation are used. However, several other
operations are available in SNOBOL4 and these can have side-effects. Three of them
are: immediate value assignment, conditional value assignment and unevaluated
expressions.

1.4.3. Side-effects during pattem matching

lmmediate value assignment is written as

P$V

15

and constrocts a new pattem that will assign to variabie V the part of the subject
string that is recognized by pattem P. This assignment is performed immediately, i.e.
at the moment that the immediate value assignment operation is encountered in the
pattem tree. Por example

'AD 1984' SPAN('0123456789') $ YEAR

assigns the string '1984' to the variabie YEAR, and

'1984 BC' (SPAN('Ol23456789') $ YEAR) 'AC'

fails, but also assigns '1984' to YEAR.

Conditional value assignment is written as

P.V

and constrocts a new pattem that will assign to variabie V the part of the subject
string that is recognized by pattem P. Assignment is only performed at the end of a
successful pattem match. Por example,

'1984' SPAN('0123456789'). YEAR

assigns '1984' to YEAR, but

'1984 BC' (SPAN('Ol23456789'). YEAR) 'AC'

fails and does not assign a new value to YEAR.

Pinally, let E be an arbitrary SNOBOL4 expression. Unevaluated expressions,
written as

•E

construct a new pattem that will evaluate the expression E at the moment the new
pattem is encountered during the match. The value of E is then used as the pattern
to be recognized. Por example,

X (SPAN('OJ23456789') $ Y) 'AA' •Y

succeeds if X contains two identical spansof digits separated by the string 'AA'. Note
that, in this example, side-effects are used that were the result of previous operations
in the pattem match, namely the immediate value assignment to the variabie Y. In
general, the evaluation of an unevaluated expression may itself cause side-effects.

With the introduetion of these operations, the program state can be inftuenced
during a pattem match by:

o immediate value assignments

o cursor movements caused by recognition operations

o side-effects caused by the evaluation of unevaluated expressions.

Note that conditional value assignment can only affect the state at the completion of
a successful pattem match.

16 INTRODUCTION

1.4.4. Problems with the SNOBOIA approach

A more elaborate example will give the reader some feeling for the oomp~exity
that can result trom the application of SNOBOL4 pattem matching operations. Let P
he the pattem defined by

((LEN(2) $ X) ('CD' I 'EF') . y •X * Y) I (LEN(3) . Y)

and assume that the variables X and Y both have initia} value 'ZZZ'. Consirlering
the pattem match

'ABCDABZZZ' P ,

which values will be assigned to X and Y after execution it? The following intermedi­
ale steps provide the answer.

I) LEN(2) immediately assigns 'AB' to X.

2) ('CD' I 'EF') conditionally assigns 'CD' to Y, i.e. assignment is not performed
but remembered.

3) •X evaluates to 'AB', and this pattem succeeds.

4) • Y evaluates to 'ZZZ' (the initia! value of Y!), and this pattem succeeds.

5) The pattem match succeeds and the oonditional value assignment to Y (which
was remembered in step 2, above) is performed.

6) At the oompletion of the pattern match, X bas value 'AB' and Y has value
'CD'.

The probieros with the SNOBOL4 approach can now be summarized as follows:

o Side-effects during the pattern match in combination with
immediate/oonditional value assignment lead to opaque programs in which
left-to-right textual order of the program souree text need not correspond to the
actual order of evaluation.

o Backtracking is completely automatic and cannot be controlled by the program­
roer. This may either lead to gross inefficiencies or to undesired or unexpected
behavior of programs.

o There are two different vocabularies in the language. One for expression
evaluation and another for pattern matching (see [Griswold80]).

l.S. A checklistforstring processing languages

After this inventory of string processing operations and associated problems in
string processing languages one can compose a list of questions that can serve as a
basis for the characterization of string processing languages. As with any question~
naire, the questions asked largely determine the answers one gets. The list of ques­
tionsgiven here is based on a particular view of the way in which string processing
languages should develop. This point of view will be explained in more detail in
Chapter 3.

1.5.1. Treatment of the subject 17

1.5.1. Treatment of the subject

o Can the subject be defined explicitly?

o What is the scope of thè subject? Is it the whole program, one procedure or
one statement?

D Can more than one subject be defined? And if so, are subjects defined consecu­
tively or simultaneously?

o Which data types can the subject have? Possibilities are character string, ebar­
aeter file, integer array and perhaps others.

1.5.2. Recognition strategy

One can distinguish several recognition strategies, such as the ones used for the
recognition of regular expressions and LL{k) or LR(k) languages, and the techniques
used for recursive descent and backtrack parsing. Only recursive descent parsing and
backtrack parsing will be considered in this thesis. There are two reason:s for making
this restriction. The first reason is historical, since initially SNOBOL4 was taken as a
starring point and backtrack parsing is the only recognition strategy available in that
1anguage. The second reason is that backtrack parsing allows the recognition of a
wider class of languages than is possible with, for example, LR(l) parsers. In: general,
it might be a better idea to make the recognition strategy invisible at the program·
ming language level and to let the implementation choose the best strategy for a given
problem. This line of development is interesting but falls outside the scope of the
current work.

With respect to backtrack parsers, the following questions can be asked:

o Are side-effects possible during the recognition process?

D How are side-effects treated in case of failure? See the last point below.

D How is flow of control backtracking organized, i.e. how is the next alternative
selected? One can distinguish between ad hoc and systematic flow of control
backtracking. In the former case, the programmee has to indicate each alterna­
tive explicitly while in the latter case, alternatives are determined in some sys­
tematic, implicit manner. Systematic backtracking may either be completely
automatic or the programmer may have the possibility of exercising more
detailed control over the backtracking process.

o How is data backtracking organized, i.e. how is determined which va1ues pro­
gram variables should have after an attempt failed? Here one can distinguish
ad hoc and systematic backtracking in the same way as above.

1.6. Keferences for Chapter l

(Aho72] Aho, A.V. & Ullman, D., The Theory of Parsing, Translation and
Compiling, Volumes I and 11, Prentice-Hall, 1972.

(Golomb65] Go1omb, S.W. & Baumert, L.D., "Backtrack programming", Joumal
ofthe ACM, 12 (1965) 4, 516-524.

(Goodenough75] Goodenough, J.B., "Exception handling: issues and a proposed nota­
tion", Communications ofthe ACM, 18 (1975) 12, 683-696.

18 INTRODUCTION

[Griswold80] Griswold, R.E. & Hanson, D.R., "An alternative to the use of pat­
terns in string processing", Transactions on Programming Languages
and Systems, 2 (1980) 2, 153-172. '

[Griswold71] Griswold, R.E., Poage, J.F. & Polonsky, LP., The SNOBOL4 Pro­
gramming Language, Second Edition, Prentice-Hall, Engtewood
Cliffs, N.J., 1971.

[Luckham80] Luckham, D.C. & Polak, W., "ADA exception handling: an axiomatic
approach", Transactions on Programming Languages and Systems, 2
(1980), 225-233.

[Morris80] Morris, J.H., Schmidt, E. & Wadler, Ph., "Experience with an appli•
cative string processing language", Conference Record of the Seventh
Annual ACM Symposium on Princip/es of Programming Languages,
1980, 32-46.

[Mowshowitz81] Mowshowitz, A., "On approaches to the study of sociai issues in
computing", Communieat/ons ofthe ACM, 24 (1981), 146-155.

[Nilsson71]

[Sale79]

Nilsson, N.J., Prob/em-solving Methods in Artificia/ Intelligence,
McGraw-Hill, 1971.

Sale, A.H.J., "Strings and the sequence abstraction in Pascal",
Software Practice and Experience, 9 (1979), 671-683.

[Van Wijngaarden76]
Van Wijngaarden, A., et al, Revised Report on the Algorithmic
Language ALGOL68, Springer-Verlag, Berlin, 1976.

[Weizenbaum76] Weizenbaum, J., Computer Power and Human Reason, W.H. Free­
man, San Francisco, 1976.

[Wirth71] Wirth, N., "The programmihg language PASCAL", Acta Informatica, I
(1971) 1, 35-63.

19

2. AN OVERVIEW OF TUE LANGVAGE SPRING

2.1. Introduetion

SPRING was designed as an implementation language for general text processing
systems. The input specifications for such systems may be very complex, since
mathematica! texts, tabular material and block diagrams must, in principle, be han­
dled. The language had therefore to provide a concise method for recognizing in its
input complex layout descriptions. Also, powerful output primitives were required for
the construction of elaborate layouts and for the use of arbitrary type fonts. '

These overall requirements together with deficiencies we had observed in SNO­
BOL4, led us to the following, more detailed design goals:

o General purpose pattem matching and string manipulation facilities.

o Pattem matching and string synthesis primitives of 'equal' power. SNOBOL4
contains extensive pattem matching facilities but only a few prirnitives for
string synthesis. By giving pattem matching and string synthesi& equal
emphasis, we hoped to be able to design a more properly balanced language. ·

o Uniform treatment of patterns and procedures. Patterns and procedures have
much in common but are treated as completely different entities in most string
processing languages. We aimed at unification of both concepts (with the uiti­
mate goal of finding a single new concept encompassing the essential properties
of both).

o Decent control structures to promote structured programrning and to facilitate
correctness considerations.

An oversimplified characterization of SPRING rnight be 'a generalized, structured
version of SNOBOL4 with enhanced string synthesis capabilities'. This characterization
does injustice to both SNOBOL4 and SPRING but emphasizes the conceptual basis from
which SPRING was developed. SPRING is a big, inextensible language: it contains ,
many primitives for pattem matching and string synthesis but it does not allow the
user to add his own operations or redefine existing ones in an easy manner.

This chapter provides a global overview of the language SPRING and gives an
impression of the range of problems that can be solved by SPRING programs. It also
draws the reader's attention to several interesting problems that arose during the
design of the language. Apart from identifying these problems, the material presented
here is largely historica! in nature and is not essential to the understanding of follow­
ing chapters.

Sections 2.2 and 2.3 give an overall idea of expression evaluation, control struc­
tures and values in SPRING. Section 2.4 contains a more detailed description of opera­
tions on 'three dimensional' character strings and Section 2.5 describes pattem match­
ing facilities. Several examples are given in Section 2.6. A critica! evaluation of the
language inSection 2.7 concludes the chapter.

2.2. Expression evaluation and control structures

SPRING is an expression oriented language. An expression consists of operands
separated by operators. Expressions return a value but have the additional property
that they can fail or succeed (see 1.3.3). This success or failure is caused by certain
operators (like the relational operators or the pattem match operator) or procedures.

20 OVERVIEW OF SPRING

Both built-in and user-defined procedures may fail and will report this faiture to their
caller. Note that expression evaluation continoes when faiture is detected, and that
faiture is reported to the enelosins expression.1

Control structures are driven by the success or faiture of expression evaluation.
For example, in the statement

if e1 then e2 else e3 ti

expression e1 is evaluated first. If this evaluation is successful, e2 is evaluated next.
Otherwise, e 3 is evaluated next.

2.3. V alues and variables

SPRING supports values of the followins types:

o integer

o block ('three dimensional' character string)

o array {one dimensional row of arbitrary values)

o table (associative memory)

o file {sequentia! character stream)

o procedure

o pattern.

Of these types, only blocks {see Section 2.4) and patterns (see Section 2.5) will be
described in detail.

Variables must be declared but are typeless, i.e. values of different typescan be
assigned to them during their lifetime. The scope of variables is either g}obal or local.
Oiobal variables are accessible from the whole program, while local variables are only
accessible from the procedure or pattem in which they are declared. Procedures can
only be declared at a globallevel.

2.4. Blocks

Written text is two-dimensional in nature, but during the 'cut and paste' pro­
cess of composing it a third dimension oornes into play. Text elements like columns
in a table, drawings or photographs, subscripts or superscripts in formulae, etc. are
stacked on top of each other in order to bring about the final result. In SPRING an

' attempt was made to provide string manipulation facilities for descrihing this 'cut and
paste' activity. The string manipulation primitives are based on the concept of 'three
dimensional blocks' of characters as introduced in [Gimpel70]. The horizontal and
vertical dimensions correspond to the width and height of a piece of paper, while the
third ('normal') dimension is used to describe the printins of several characters on the
same position of the paper. In principle, such blocks can be concatenated, sliced and
replicated in all three dimensions. Operations on blocks return a tree-shaped data
strueture as 'value'. Printing such a value involves traversing the tree from left to
right. During the traversal a projection along .the normal axis is performed, hence the
normal direction corresponds to overprinting. Concatenation of blocks is denoted by

I) Compare Ibis with the SUMMER evaluatiol'l model (see Chapter 4), în which evaluation of an expression is
aborted as soon as a subexpression fails.

2.4. Blocks 21

'11' (horizontal), '==' (vertical) and '++' (normal). Some examples of block-valued
expressions and their printed image are shown in Figure 2.1.

Expression

'a' 11 'b'

'a' == 'b'

'0' ++'I'

Printed image

ab

a
b

Figure 2.1. Examples of simple block expressions.

In multi-dimensional concatenation the alignment of the blocks being con~
catenated can be specified with the aid of special operators. For example, '=<' indi­
cates vertical concatenation with left sides aligned, '=>' indicates vertical concaténa­
tion with right sides aligned, and '==' indicates centered, vertical concatenation.
Three examples are shown in Figure 2.2.

Expression Printed image

'ah' =< 'c'

'ab' => 'c'

'abc' == 'd'

Figure 2.2. Examples of aligned blocks.

ab
c

ab
c

abc
d

Apart from these basic construction operators, several built-in functións exist
for the creation of three dimensional blocks with given dimensions.

Finally, it is possible to create two types of block ('iterated' and 'duplicated')
which are repeated depending on the context in which they occur. Both the number
of repetitions and the direction of repetition are context controlled. The meaning of
these blocks strongly depends on the fact that the creation and printing of a block is a
two stage process, since 'ancestor' information is needed to determine the size and
form of their final printed image. The tree-like data structure that is the result of
block creation establishes, in a natural way, a 'parent' and 'grandparent' relation
between blocks (i.e. nodes in the tree). A block creation expression that contains
several occurrences of a binary operator at the same nesting level is represented by a
node with more than two descendants. This is illustrated in Figure 2.3. The parent
and grandparent of the terminal node containing 'c' are marked with P and GP
respectively.

22 OVERVIEW OF SPRING

'a'

'c' 'd' 'e'

Figure 1.3. Tree representation of 'a'++'b'++('c'=•'d'=='e').

. A last point to be kept in mind before discussing context controlled blocks is
thai printing a block is also a two pass process. In the first pass, the overall dimen­
sions of all blocks are determined by traversing the tree and accumulating size infor­
mation. In the second pass, blocks are printed and the overall size information is
used to determine the number of duplications of context controlled blocks.

Expression

'underlines' ++ it('_')

('abc'=== 'd') ++ it('_')

poleI : == it('l ');
pi/el : = 'x' == 'x';
po/el 11 pi/el 11 polei

pile2 : == y' == Y' == y';
polei 11 pile2 11 po/el

Figure 2.4. Examples of iterated blocks.

Printed image

underlines

lxl
lxl

lYI
lYI
lYI

lterated blocks are duplicated in the two directions orthogonal to the concate­
nation direction of the parent of the iterated block in the tree. The number of dupli­
cations is determined by the overall dimensions of the parent An iterated block is
created by the procedure call

it(B)

where B is the block to he duplicated. Some examples of iterated blocks are shown in
Figure 2.4. In the second example, the underline character '-' is duplicated in both
horizontal and vertical direction.

2.4. Blocks 23

It is instructive to visualize Jbe tree structure that is built for such complex
block operations. This is done in Figure 2.5. Note that ('abc' == 'd') delermines the
overall size of the printed result and that the '+ +' operator determines the direction
of iteration of the argument of it.

Figure l.S. Tree representation of ('abc' === 'd') ++ it('-').

Replicated blocks are duplicated in the concatenation direction of their parent,
but the number of duplications is determined by the overall dimensions of the
grandparent of the replicated block. A replicated block is created by

rep(B)

where B is the block to be duplicated. Some examples are shown in Figure 2.6.
Here, hor(20) creates a block with size 20 in the horizontal direction and size 0 in the
vertical and normal direction.

Expressions:

linei := 'lntroduction' 11 rep('.') 11'1';
line2 : = 'Final thoughts' 11 rep('.') 11'13';
hor(20) == line I == line2

Printed image:

Introduction 1
Final thoughts 13

Figure 2.6. Example of replicated blocks.

' 24 OVERVIEW OF SPRING

2.5. Patterns 2

A pattern match is initiated by the match operator '?', which bas a string (or
text file) as left operand ('the subject') and a pattern as right operand. The simplest
form of a pattern is a string. For example,

'abc'? 'ab'

determines whether the subject contains the string 'ab'.3 The match operator can fail
or succeed and delivers a value in both cases: the subject, in case of failure, and the
assembied scan value (see below) in case of success.

More complex patterns are built by means of subsequentiadon ('--') and
alternation ('1'). Subsequentiation and alternation are identical to pattern concatena­
tion and alternation in SNOBOL4.

The assembied scan value is the horizontal, centered concatenation (see 2.4) of
contributions made during the pattern match. Two types of contribution exist. Inter·
nal contributions (denoted by =P, where Pis a pattern valued expression) contribute
a value which is equal to the part of the subject that is matebed by P. For instance,

'b' ? =('a' l'b' l'c')
contributes 'b'. External contributions (denoted by IS, where S is a string valued
expression) just contribute the value S. For instance,

'b' ? ('a' I 'b' l'c')--l'xyz'

contributes 'xyz' and

'b'? =('a' I 'b' I 'c') -- l'xyz'

contributes 'bxyz'.

Closely related to the above contribution operators are the subject assignment
and contribution assignment operators. Subject assignment (denoted by P =:V,
where P is a pattern valued expression and V is a variable) assigns to V the part of
the subject that is matebed by P. For instance,

'b' ? (('a' I 'b' I 'c') =: x)

assigns 'b' to x.

Subject assignment is identical to conditionat value assignment in SNOBOL4.

Contribution assignment (denoted by PI: V, where P is a pattem valued expression
and V is a variable) assigns to V the contributions made by P and does not add
these contributions to the assembied scan value. For instance,

'b'? (=('a' I 'b' j'c') -- l'xyz') 1: x

assigns 'bxyz' to x, but does not deliver a scan .value.4

As already mentioned in the previous chapter, a rather delicate question must
be answered as to the precise moment at which such assignments are effectuated: this

2) A more extensive description of pattem matching in SPRING is given in [Klint78).
3) In fact a distinction is made between UIIIIIIChored and auchored pattem matching. Only the latter will be
discussed bere.
4) Compared with the pattem matching model used in SUMMER one can consider contributions and contribu­
tion assignmenl as melhods of retuming a value from a pattem matching procedure.

/.

2.5. Patterns 25

may be immediately after the successful application of the left hand operand of the
assignment operator (independently of the success or failure of the overall pattem
match), or when the whole pattem match succeeds. SPRING provides two forms of all
operators for which this duality exists. Assignment operators can be either condi­
tional ('=:' and '/:') or immediate ('!•:' and '!/:').

To complete this overview of pattem matching facilities, four points will now
be discussed: unevaluated expressions, actions, built-in functions and pattems with
arguments and local variables.

Unevaluated expresslons (denoted by *P, where P is a pattem) are similar to
unevaluated expressions ·in SNOBOL4 and provide a means of delaying the evaluation
of a pattern until it is actually needed during a pattem match. This is useful for the
definition of recursive patterns and for the definition of patterns which are context
dependent For example,

p :• ('b' -- *P l'a')

defines a pattem that matches 'a', 'ba', 'bba',

Conditional and immediate actions (denoted by @E and !@E respectively,
where E is an arbitrary expression) are pieces of program which are evaluated but
whose value is not used by the pattem matching proèess, i.e. they are evaluated for
their side-effects and not for their value. For example,

'ab'? 'a' -- @print('an action') 'b'

will print 'an action'.

Many buUt-in functions are available and most of them have already been
described in the previous chapter. Examples are span, any, /en, break, arb (which
recognizes a string of zero or more characters, depending on the success or failure of
the pattem following it), rpt (which applies a pattem repeatedly until it fails), pos,
rpos, tab, rtab, reverse and replace. ·

To make procedures and pattems as sirnilar as possible,5 pattems may have
arguments and local variables. The use of patterns with local variables is illustrated
by the following pattem 'palindrome' which recognizes a restricted class of palin­
dromes:

palindrome : = pat { var head;
break('.')! • :head -- '.' -- *reverse(head) -- rpos(O)

}

This pattem will recognize all strings of the form

<left-part> '.' <right-part>

where <left-part> and <right-part> are each others reversal. lt is tacitly assumed
that neither <left-part> nor <right-part> contains a full-stop (e.g. the character '.').
The built-in function rpos(O) is used to eosure that the pattem match proceeds to the
last (rightmost) character of the subject string.

5) Real similarity between procedures and patterns has not been achieved in SPRING. In SUMMER (see Chapter
4), the similarity is 'perfect', since the notion of pattems does not exist at all.

26 OVERVIEW OF SPRING

The use of pattems with argumentsis exemplified by the pattem •sequence':

srquence : = pat(atom, separator){ atom -- rpt(separator -- atom)}

which recognizes sequences consisting of one or more •atoms' separated by 'separa­
tors'.6 The use of sequence, in a pattem that recognizes variabie declarations of the
form

variabie identijier1, ... , identifier;. ;

might look like:

'variable' sequence{identifier, ',')

1.6. Some examples

'·' '

A few examples will illustrate the use of the primitives mentioned so far. A
series of pattern definitions for the recognition of identifiers is: 7

I empty
2 letter
3 digit
4 letgit
5 ld

: == ";
: = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
: = '0123456789';
: = letter 11 digit;
: = any(letter) (span(letgit) I empty);

Now the pattem match stringvar? id will succeed if the value of stringvar begins with
a string having the form of an id.

A naive procedure (not covering all exceptional cases) for the conversion of
integers to roman numerals is (see [Gimpel76]):

I proe roman(n){
2 var t;
3 if succeed n : = (n ? =rtab(l) -- (/en(l) =: t))
4 then
5 return(
6 replace(roman(n), 'IVXLCDM', 'XLCDM**') 11
1 ('0,1/,2Il,3III,4/V,5V,6V/,7V//,8Vll/,9IX,'? t-- =break(','))
8)
9 6

IO };

In line 3 the number n is split into a left part which is assigned to n, and a
rightmost digit which is assigned tot. In line 6 the left part n is converled to roman
and multiplied by ten (in roman). In line 1 the rightmost digit is converted to roman
and appended to the result.

A final example illustrates the power of integrated pattem matching and multi­
dimensional string concatenation. The following grammar recognizes parenthesized

6) In fact, 'atom' and 'separator in the above expression should be preceded by an unevaluated expression
operator (i.e. manadie '•'). Tbis is needed to achleve the correct binding time of these variables. These (very
intricate) problems wil! not be addressed bere, but see Section 2.7.
7) In the following examples, line numbers are added to simplify the description. These are, however, not part
Of the actual programs.

2.6. Some examples 27

list expressions and couverts these expressions into a two-dimensional representation
of the list:

I blank
2 list
3

:- SPll!l<' ') I";
: == pat{ var result, atom;
(span(letter) = : result I

'(' -- rpt(•listl:atom -- @(result := result I< atom)) -­
@(resu/t : = it('- ') == result) -- ')'

) blank I(' ' 11 ('I' == result) 11 ' ')

4
5
6
7 };

Figure 2.7 gives an example of the result of applying this pattern. In line 3 of
the above program, an atomie list is recognized and the associated name is assigned
to result. In lines 4-5, a parenthesized list with sublists is recognized. During each
repetition the next sublist is concatenated to the result with all tops aligned (this is
done by 1<). In line 5, a row of dashes (equal to the width of the result, formedby
it('- ')) is placed on top of the result. Finally, in line 6 a bar is placed on top of the
result (this is done by ==) and a blank is appended to the left and the right of result,
after which it is contributed to the overall result.

Figure 1.7. The result of applying the pattern list to
'(a (d (e j) (g h) i) j k)'

2..7. SPRING in retrospect

I I
j k

What are the merits of SPRING as a programming language and to what extent
does it meet the design goals stated in Section 2.1?

The following observations can be made about the programming language
aspects of SPRING:

l) The interaction between expression evaluation and pattem matching is not satisfac­
tory. Most of the problems involved can be traeed back to the problem of different
evaluation moments. Depending on the type of an expression and its syntactic posi­
tion, one can distinguish the following five moments at which a SPRING expression can
be evaluated:

o Normal expression evaluation.

o Pattem construction.

28 OV.l<:RVIEW OF SPRING

o Pattern matching.

o Cooditional expression evaluation.

o Immediate expression evaluation.

The four additional evaluation moments as compared to other languages are due to
two basic dichotomies in the language model: the distinction between expression
evaluation and pattern matching and the distinction between conditionat and immedi­
ate operations. Although the model is consistent in itself, it does not of course relleve
the poor programroer from having to worry about all those different evaluation
moments. In summary, one can say that the language as a wholeis too complex and
is not based on a simple conceptual framework. Also, the distinction between
immediate and conditional evaluation is unsatisfactory, since in many cases the
evaluation order is not reflected properly by the program text. This can be seen in

'abc' ? ('a'= :x) ('b'! =:x) -- ('c' =:x)

where the values 'b', 'a' and 'c' are assigned to x in this order.

2) The lack of data structures other than arrays and tables is annoying. There is,
however, no fundamental reason why data structures could oot have been added.

3) SPRING uses a consistent but awkward notation. It was probably unwise to use so
many built-in operators consisting of operator symbols lacking mnemonic value.

4) It turns out to be difficult to imptement the language efficiently.

Regarding the design goals one can make the following observations:

1) SPRING provides general purpose pattem matching and string manipulation facili­
ties.

2) The synthesis facilities based on the 'block' concept are very powerful but cannot
e31sily be extended to arbitrary type fonts consisting of characters with different sizes.

3) A uniform treatment of pattems and procedures has not been achieved .

. 4) Control structures are simple but adequate.

5) Inherent inefficiencies in the implementation of the 1anguage make it less suited to
applications in a production environment (although it is still being used for this pur­
pose).

2.8. References for Cbapter 2

[Gimpel70] Gimpel, J.F., "Blocks- a oew datatype for SNOBOL4", Communiea­
tions ofthe ACM, 15 (1972) 6,.438-447.

[Gimpel76]

[Klint78]

Gimpel, J.F., Algorithms in SNOBOL4, Joho Wiley, 1976.

Klint, P., "Pattern matching in SPRING", in: Van Vliet, J.C. (ed),
Colloquium Capita Datastructuren, Mathematica} Centre Syllabus
37, 1978, 65-83.

29

3. DESIGN CONSIDERATIONS FOR STRING PROCESSING LANGUAGES

3.1. Introduetion

The application of backtracklog in pattem matching and the integration of pat­
tem matching operations into string processing languages form the central themes of
this chapter.

Backtracklog can be used to solve eertaio classes of pattern matching problems
elegantly. However, the effects of backtracking on the global program state are often
difficult to understand. Are side-etfects postponed until the backtracklog process as a
whole bas succeeded (which restnets the class of problems that can be solved}, OI' are
such modifications · performed imrnediately and undone on failure? Several methods
are being used to control the interaction between the backtracking process and its
side-etfects. Most methods have defects. In this chapter an attempt will be made to
improve on this state of affairs.

The analysis of backtracking will proceed in three stages. First, in Section 3.2
some representative pattem matching functions and operators are defined. These
functions are sufficiently powerfut that they exhibit the sarne problems with regard to
side-etfects and backtracking as occur in, for example, SNOBOL4. They are, at the .·
sarne time, sufficiently simple to allow a concise lormal definition of their semantics
and an analysis of the problems at hand. In other words, these functions are uséd to
model (i.e. imitate on a smaller scale) eertaio features of existing programming
languages.

Secondly, we have to choose a method for descrihing the semantics of ba<:k­
tracking processes. After oomparing several methods found in the literature, an
improved description metbod is introduced, which is based on operational semantics.
This is the subject of Section 3.3.

Thirdly, the description metbod is used to compare two different pattern match­
ing models. In Section 3.4.2 the immediate/conditional model is described. This is a
generalization of the SNOBOL4 model [Griswold71] which bas been used in SPRING (see
Chapter 2}. In Section 3.4.3 the recovery model is introduced. This new model is
based on the recovery block concept [Randell75] which bas been used for the con­
struction of fault-tolerant software. It is an attractive alternative to existing back­
tracking models, since it combines simplicity and consistency with adequate expressive
power and ease of implementation.

Finally, Section 3.5 is devoted to the question of how pattern matching and
normal expression evaluation can be integrated and how the domaio of pattern
matching can be extended beyond the domaio of strings. In the following chapters
these ideas will be ex plored further.

3.2. Some representative pattem matching functions and operators

We first introduce a uniform terminology with the aid of which the problems
inherent in the two pattern matching models can be discussed. A pattem defines a set
of acceptable strings. It is a predicate which succeeds or fails when presented with a
string that is or is not an element of the set of acceptable strings. Arbitrary (ter­
minating) computations may be performed while determining whether a given string is
acceptable or not. A pattem match is the. process of deciding whether a given string
S is acceptable to a given pattern P or not. The notation S ? P will be used to

30 DESIGN CONSIDERATIONS FORSTRING PROCESSING

denote a pattem match. 'All (sub)patterns in P will operate on the same subject
string S. An implicit index (the cursor) holds the position in the subject string where
each subpattem should start its recognition task.

Three types of primitive patterns will be used: string literals, unevaluated
expressions and açtions. These are informally defined as follows:

String literal: T
Try to match a given string value T in the subject string starting at the current
cursor position.

Unevaluated expression: •E
Evaluate expression E and use the result as a pattern.

Action: act{E)
Evaluate expression E for its side-effects. This primitive pattern always
succeeds and does not cause any movement of the cursor (i.e. it matches the
empty string).

These primitive patterns cao be combined to form more complicated pattems
by means of the pattern construction functions altemation, subsequentiadon and sub·
ject assignment. Note that we will attach different meanings to alternation and subse­
quentiation in the two pattern matching models to be · considered. Here, their mean­
ing is the one used in the immediatel conditional model. Their meaning in the
recovery model is given in Section 3.4.3. The pattem construction functions are infor­
mally defined as follows:

Alternation: P I Q
If pattem P fails, attempt pattem Q ; if P succeeds, remember Q in case
failure occurs later on (this cao only happen if the alternation is part of a larger
pattern).

Subsequentiation: P -- Q
Attempt pattern Q after a successful match of pattern P.

Subject assignment: sbas (P, V)
The part of the subject string successfully matebed by pattern Pis assigned to
variabie V. (This resembles the •: and •$' operators in SNOBOL4.) Note that
subject assignments are more restricted than primitive action patterns: the latter
may contain assignments of any value to any variable, but the former only
allow assignment of a matebed part of the subject string to an explicitly men­
tioned variable.

, This collection of functions and operators exhibits most features found in pat­
tem matching languages. Later on, some additional functions that are typical for
each individual model will be introduced.

3.3. · Description metbods for pattem matdling

Before we embark on our attempt to compare both models, it is necessary to
select appropriate semantic description tools. Four methods are discussed:

SET: patterns are characterized by the (possibly infinite) set of strings recognized by
them.

3.3. Description methods for pattem matching 31

ALG: patterns are described by algebraic transformations on (subject, cursor) values.

COR: patterns are described by collections of recursive coroutines

OPS: patterns are described by operational semantics.

3.3.1. Pattems defined by sets of strings

SET is tbe oldest method for descrihing patterns and was used during the
design of SNOBOL3 [Farber64]. lt is possible to view pattems as generative grammars
and to associate a set of strings with every pattem constructed from simpte strings by
sequentiation and alternation. This metbod bas several disadvantages. A first
difficulty sterns from the fact that alternation is not commutative, i.e. it applies its left
and right operands in .left-to-right order. (This could be repaired by using ordered
sets of string.)

More severe difficulties arise, however, with several prirnitive patterns. It is
extremely difficult, if not impossible, to associate a unique set of strings with pattems
containing prirnitives like POS(n), TAB(n) or BREAK(s), since the strings tbat are
matebed by such prirnitives depend on the patterns in which they occur.

3.3.2. Pattems defined by algebraic transformatloos

This metbod (based on [Gimpel73] and [Stewart75]} describes the meaning of a
pattem as an algebraic transformation of (subject string, cursor) values. The meaning
M of a pattemP is defined by a function M(P)(S, c), where Sis the subject string
and c is an integer indexing S. c is called the pre-cursor position. The value of
M (P)(S ,c) is an ordered sequence of integers, indexing S, which are called the
respective post-cursor positions. Cursor positions can take on the values
0, I, ... , length(S), wbere length(S) denotes tbe lengtb of tbe subject string S. As
soon as the meaning of tbe elementary scanning functions bas been expressed in terms
of transformations on sequences of pre-cursor values to sequences of post-cursor
values, one can simply use composition of cursor sequences to define the meaning of
arbitrary patterns.

For instance, the meaning of a string literal T can be described by

M(T)(S,c) - if substring(S,c,length(T)) = T
then

{c+length(T)}
el se

{}
fi.

In otber words, take a substring from S, starring at cursor position c, that bas the
same length as T. If such a substring exists and it is equal to T, the string literal is
said to match and tbe result is tbe post-cursor sequence {c +length(T)}, i.e. the cur­
sor moved past string T. Otherwise the match fails and this is indicated by the empty
post-cursor sequence {}.

Alternation of patterns P 1 and P 2 can be described by

M(PI I P2)(S,c) = M(PJ)(S,c) e M(P2)(S,c)

wbere e denotes the concatenation of two sequences.

32 DESIGN CONSIDERATIONS FORSTRING PROCESSING

Subsequentiation of pattems P 1 and P 2 .can bedescribed by

M(P1 -- P2)(S,c) = M(P2)(S, M(Pt)(S, c)).

It is tacitly assumed bere that M (P) bas been generalized so as to operate on cursor
sequences, i.e. the tunetion M(P): S X N -!> 2N bas been generalized to
M(P): s x 2N -!> 2N' wbere s denotes the set or subject strings and N denotes tbe
natura! numbers.

We now apply these definitions in an example. If P and S are defined by

P == 'ab' l'aab' l'a'
S == 'aab'

tben the application of pattem P to the string S can be characterized by

M(P)(S,O) = {3, 1}
M(P)(S, 1) = {3, 2}
M(P)(S, 2) = {}
M(P)(S, 3) = {}.

Continuing in the same spirit, one can give concise definitions for the elementary
scanning functions as defined in Chapter I :

M(LEN(n))(S, c)
M(POS(n))(S, c)
M (RPOS (n))(S, c)
M(TAB(n)}(S, c)
M(RTAB(n))(S, c)

= if c + n .;;; length(S) then {c + n} else {} fi
= if c = n then {c} else {} fi

if n = length(S) - c then {c} else {}ft
= if n .;;;. c & n .;;; length(S) then {n} else (}ft
= if length(S) - n ;;;. c & n .;;; length(S)

then {length(S) - n}
else {}
ft

Tbis metbod is suited to the description of the recognition properties of pat­
terns but it does not lend itself to the description of side--effects occurring during a
pattem match.

3.3.3. Patterns deftned by recursive coroutines

SLS is a language that provides programmabie backtracking based on recursive
coroutines. For a description of this metbod the reader is referred to [Doyle75),
[Druseikis75] or [Griswold76]. The latter reference also contains an overview of SL5.
There is a straightforward relationship between SL5 coroutines and the more familiar
detacb/resume operations in SIMULA [Dah170]. SL5 bas been used to describe pat­
terns: a separate coroutine is associated with each component in the pattem and sig­
naling between coroutines is used to control the pattem matching process.

The recursive coroutine metbod is powedul in that it allows the description of
both the recognition process itself as well as the side-effects caused by it. Although
the primitives used are powerful, they are not generally known and rather complex,
and this would lead us to the undesirable sitqation that a complex problem would
have to be described using complex prirnitives. We therefore explore a much simpter
description method.

3.3.4. Pattems defined by operational semantics 33

3.3.4. PaUerns defined by operational semantics

The previous methods are either basedon high-level concepts (coroutines) or do
not address the problems of environment modilication during a pattem match: In
this section we shall develop a description technique based on an operational metbod
for defining the semantics of programming languages. In this way we obtain a pre­
cise, operational definition of pattem matching semantics wbich is not based on com­
plex primitives but nevertheless completely describes all aspects of pattem matching;

To describe a pattem matching model completely two entities must be
specified:

PAT A grammar descrihing all pattems.

match A function descrihing the meaning of those patterns.

To structure the following discussion we further identify:

EXP A subset of PAT containing the syntax rules that describe the expressions that
may occur in a pattem.

eva/ A function descrihing the meaning of expressions. Obviously, eva~ may be
considered as an auxiliary function of match .

In the next section the functions match and eva/ will be described in a simple, but
powertul programming language.

3.4. A comparison of two backtraddog models

3.4.1 Common definitions for the two models

Some global variables are shared by PAT, match, EXP and eva/. lt is not
essential to do so, but it makes the resulting descriptions more concise. This global
information consists of:

subject_string:
the current subject string for eacb pattem matching process being described.
For convenience, we introduce the set CURS of legal indices (i.e. cursor posi­
tions) in the current subject string.

/N/TIAL_ENV:
the program environment (i.e. the values of variables) at the start of the pat­
tem matching process.

CURRENT_ENV:
the initia} environment modilied by expressions evaluated during the pattem
match.

Environments consist of (name, va/ue) pairs and .for reasons of simplicity we
assume bere tbat all narnes are global. An identifier id with value val is added to
environment ENV by the operation:

ENV.bind(id, val) .

If id occurred already as the name-part in some pair in that environment, only the
value-part of that pair is modified. The value associated witb an identifier id in. the
environment ENV is retrieved by:

ENV.binding(id) .

34 DESIGN CONSIDERATIONS FORSTRING PROCESSING

We require id to be the name-part of some pair in ENV. Finaliy, complete environ­
ments can be copied by the operation

ENV2 ;::;:; copy(ENVJ)

which assigns a copy of environment ENV1 to ENV2•

Another aspect common to both models is the expression language EXP. In
the remainder of this paragraph, EXP and its formal definition wiJJ be explained.
The syntax1 of EXP is given by:

<expression> :: = { <assignment> 1
;

1
} * .

<assignment> :: = <identifier> ':= 1 <right-hand-side> .
<right-hand-side> :: = <string-literal> I <identifier> [1 + 1 <string-literal>] .

An <expression> thus consists of zero or more <assignment>s separated by semi­
colons. Each <assignment> consists of an <identifier> foliowed by an assignment
operator (': =') and a <right-hand-side>. A <right-hand-side> consists either of a
<string-literal>, an <identifier>, or an <identifier> foliowed by a plus sign foliowed
by a <string-literal>.

The semantics of <expression>s is as foliows. The <assignment>s in an
<expression> are treated from left to right. An <assignment> can have three
different kinds of <right-hand-side>:

Case I: <identifier> 1 : = <identifier>2: 'Bind' the value of <identifier>2 to
<identifier>1 in the current environment.

Case 2: <identifier> 1 : = <identifier>2 + <string-literal>: Concatenate the
(string) value of <identifier>2 and the <string-literal> to obtain a new
string value. Tbis new String value ÎS bound tO <Îdentifier> 1 in the
current environment.

Case 3: <identifier> : == <string-literal>: The <string-literal> is bound to
<identifier> in the current environment.

F or instance, the evaluation of the expression

x: = 1abc1;y: =x;z: =y+ 1def1

will add the pairs (x,'abc 1
), (Y,'abc 1

) and (z,'at?cdef') to the current environment (pro­
vided that no previous bindings existed for the variables x , y and z).

The format definition of the semantics of EXP is given in Figure 3.1. The
notation for formal definitions as used there will be used throughout. lts most
unusual feature are the parse expresslons of the form2

1
{ {

1 <identifier> 1 ==- 1 <syntax-rule> '}} 1
•

These parse the string value of a given identifier and at the same time extract sub­
strings from it. To this end, parts of the <syntax-rule> can be labelled with tags.
Each tag corresponds toa variabie declared elsewhere in the program (such as exprs
and id 1 in the above definition) and upon a successful parse of the string value, each

I) See 8.1for a definition of the syntax notatioo used.
2) Do not oonfuse the syntactic equality operator usedhere and the block concatenatioo operator as described
in Sectioo 2.4. Bothare denoted by the symbol '••'.

3.4.1 Common definitions for the two models 35

such variabie receives, as value, the substring recognized by the part of the syntax rule
following the tag. If the tag labels a repetitive syntax construct (as with exprs above),
the corresponding variabie receives an array of strings (one string for each repetition
of the construct) as value. Obviously, parse expressions can succeed or fail. If it is
known in advance that a parse expression will always succeed (as is the case in the
lines marked with #a# and #b# in Figure 3.1), the expression need not be contained
in an ir-statement and can be used for the sole purpose of extracting substrings.

Our notation is fully described in part 11 of this thesis and an informal descrip­
tion can be found in Chapter 5. In the following sections we assume it to be self­
explanatory.

proc eval(s)
(var e, exprs, idl, id2, rhs, str, val;

if { { s •= exprs: { <assignment> ';' }* } }
then

for e in exprs
#a# do {{ e -- idl:<identifier> ':=' rhs:<right-hand-side> }} ;

if { { rhs == id2: <identifier> } }
then

val : = CURRENT _ENV.binding(id2)
elif {{ rhs === id2:<identifier> '+' str:<string-literal>}}
tb en

val : = CURRENT _ENV.binding(id2) 11 str
else

b# { { rhs == str: <string-literal> } } ;
val:== str

);

fi;
CURRENT _ENV.bind(id1, val)

od
el se

ERROR
fi

Figure 3.1. Formal definition of eva/.

3.4.2. 1be immediatel conditional model

3.4.2.1. Overview

In this model (a generalization of the SNOBOL4 model) the moment at which
operations are performed can be controlled at the prograrnming language level. The
meaning of the functions act (action) and sbas (subject assignment) may depend on
the moment they are carried out. There are two versions of these functions. The
immediate versions imact and imsbas are performed at the moment they are encoun­
tered during the pattem match; the global environment is neither saved nor restored
on failure. The conditional versions cdact and cdsbas are remembered when they are

36 DESIGN CONSIDERATIONS FOR STRING PROCESSING

encountered during the pattem match but are performed only after the successful
completion of the complete pattem match. Remembered conditionat functions are
forgotten if the pattem match faits.

Conditionat functions do not add recognition power, because only immediate
modifications of the environment can inftuence the direction in which the recognition
process proceeds. The recognition power of pattem matching is thus based on the
existence and power of immediate functions. One can, for instance, build context
dependent patterns by combining (immediate) subject assignment and unevaluated
expressions.

An example may illustrate why it is, in principle, desirabie to use such a power­
fut model.

Suppose pattem matching is used to parse a program. Parsing of certain con­
strocts in the program, like variabie declarations, must have an immediate effect on
the parsing of the remainder of the program. Later occurrences of variables can then
he compared with their declaration.

Immediate operations allow the recognition of context-sensitive languages. One
way of recognizi.ng the (context-sensitive) language A n Bn en is: 3

row_of_A :"'" 'A' -- *row_of_A I" ;
abc : = imsbas(row_of_A,as) -- imact(n: =length(as)) --

•replicate('B',n) -- *replicate('C',n);

Here, row_of_A recognizes arbitrarily long sequences of 'A's. Pattem abc first
attempts to recognize a row of 'A's which is immediately assigned to variabie as.
Next, the lengthof as is computed and assigned to variabie n. Finally, two new pat­
tems are constructed (and attempted) consisting of n 'B's and n 'C's respectively.

The above example illustrates the usefulness of immediate operations. But
under which circumstances is it desirabie to perform operations conditionatly? An
extreme example is in the code generation phase of a compiler: all code generation
operations would he remembered until the whole program had been parsed. After the
program was found to he syntactically correct, the code generation operations would
be carried out. H, on the other hand, syntax errors were detected, all code generation
operations would be discarded. A less extreme example is the parsing of (locally)
ambiguous or non-LL(l) languages. lf a construct can be identified only after having
been parsed in its entirety, it may be necessary to postpone all operations associated
with it until that time. This may, for instance, arise in a language allowing multiply
labelled statements: in that case an identifier is either the next label or the beginning
of the actuat statement. The same phenomenon atso occurs for case statements allow­
ing an arbitrary number of expressions to be associated with each case.

We now list some advantages and disadvantages of the immediate/conditionat
model. The advantages are:

3) In order to present a non·triviai example, we have taken lhe liberty of using a slightly more powerful EXP
language lhan delined in 3.4.1; <right·hand-side >s consisting of function calls and functions (like length and
rep/iCQte) were not defined !bere but have an obvious meaning.

3.4.2. The immediate/conditional model 37

ÇJ Information about failure can be passed to higher levels; it is thus possible to
construct pattems that do not require rescanning of the subject string.

o The programmer bas explicit control over the moment operations are per­
formed. This is also a disadvantage however, since it complicates the model.

o The model can be implemented efficiently.

' Disadvantages of the immediate/conditional model are:

o Mixing of conditionat and immediate operations is problematical. First, the
program text no longer reflects the ordér of events, which greatly reduces its
readability. Secondly (and worse), conditionat operations are performed in the
environment as it exists at the end of the successful pattem match in which
they occur. This is the price paid for an efficient implementation: the environ­
ment is not saved when a conditional operation is encountered during the pat­
tem match. Consider, for example:

P: = 'ab'--imact(n: ='X')--'c'--cdact(res: =n)--imact(n: =n+'Y');

During the pattem match 'abc' ? P the following steps are performéd:

I) The string 'ab' is recognized.

2) The operation n: ='X' is performed.

3) The string 'c' is matched.

4) The operation res: = n is remembered.

5) The operation n:=n+'Y' is performed. This amounts to assigning the
string 'XY' to variabie n.

6) The pattem match succeeds and all remembered operations (in this
example only res: =n) are performed in left to right order.

Variabie res thus receives 'XY' as final value, but 'X' insteadof 'XY' would in
many respects have been a more reasonable outcome.

o Each implementation of the immediate/conditional model bas to solve the
non-trivial problem of not imposing restrictions on the number of simultane­
ously remembered conditional operations. If an implementation does impose
such restrictions, it may not be possible to perform pattem matches in which
large numbers of conditionat operations occur (such as compiling a whole pro­
gram in one pattem match). In practice, this would have the highly undesir­
able effect of forcing the programmer to use immediate operations exclusively
and of seriously limiting the usefulness of the backtracking facility.

o lt is not visible whether a pattem modifles the global environment on failure or
not.

A final illustration of the intricacies of the immediate/conditional model fol­
lows. Consirlering

x :='A';y:='B';
pi := 'a'--imact(x:=x+'X') l'ab'--cdact(x:=x+y);
p2 := imact(y:=y+'Y')--'c';
p := pl -- p2;

the match 'abc' ? p succeeds and results in x = 'AXBYY', y = 'BYY', while 'aef' ? p
faits andresultsin x = 'AX',y = 'BY'. These results are baroque, to say the least.

38 .DESIGN CONSIDERATIONS FORSTRING PROCESSING
'

3.4.2.2. Formal description

In the immediatel conditionat model, tpe grammar PAT is described by the
syntax rules:

<pattern> :: = <pattem-primary> [('I 1 I '--') <pattem-primary> 1 .
<pattern-primary> :: =

'(' <pattem> 1
)' I

<string-literal> I
<identifter> I
1* 1 <identifier> I
<compound> I
IMSBAS '(1 <pattem-primary> ',' <identifter> 1

)' I
CDSBAS '(' <pattern-primary> ', 1 <identifier> ')' I
IMAcr 1

(
1 <expression> 1

)' I ·
CDACf '(' <expression> ')'.

<compound>. :: = 1 <' <integer-constant> ', 1 <expression> 1
,

1 <pattem> '> '.

In order to simplify the format definition, we assume without toss of generality, that
all syntactic ambiguities are eliminated by the proper use of parentheses, e.g.
P 1 ((Q--R)- -S) should be used insteadof P I Q--R- -S. In the exam­
ples, the non-parenthesized version will }:tl used (for better readability) and the opera­
tor •--' is assumed to have higher priority than the operator 'I'·

Roughly speaking, the state a pattem match is in is fully" specified by the fol­
lowing three parameters:

o The pattem that bas to match in order to complete the pattem match success­
fully.

o The cursor position in the subject string where the above pattem should match.

o An expression that is equivalent to all remembered conditionat operations.
Evaluating this expression has the samè effect as evaluating all remembered
conditionat operations in left to right order.

The meaning of a pattern can now be expressed in terms of its effects on the above
three entities.

More formally, the semantics of patterns is given by the function

match: CURS X EXP X PAT-+ CURS X EXP X PAT> U FAIL

where PAT> is equal to PAT U {nul/} and nul/ is the pattem that always fails.
Note that nul/ can only come into existence as .the result of applying match, but that
match is not defined on it. match attempts to transform the (cursor, expression, pat·
tern) triple (C, E, P) into a new triple (C', E', P') as follows. If pattemP matches
successfully, the cursor is moved to C', all conditionat operations performed during
this part of the match are appended to expression E (resulting in E'), and P' is a
pattem consisting of all untried alternatives of P . If P fails, match should deliver the
value FAIL. The tunetion match to be described below achieves this by performing
an freturn (failure return) operation. This is equivalent to returning the Boolean value

4) The existence of the global variables subject...string, INITIAL.ENV and CURRENT_ENV is not con­
sideréd bere.

3.4.2. The immediate/conditional model 39

fa/se which can subsequently be tested for by the caller of match.

Apart from <compound>s, all notions in the grammar given above correspond
to some primitive pattern. An implicit semantic property of the
immediate/conditional model made it, however, necessary to add a new type of pat­
tem: As was illustrated previously, attempting 'untried altematives' of a pattem
requires a mechanism to restore a previous state of the pattem match. To achleve
this, <compound>s have been introduced as explicit representations of the pattem
matching state.

The format definition uses several auxiliary functions. Functions like mk_alt
and mk_comp construct new elements of PAT from given components. For example,
let subject.....string have 'abcdef' as value, then

p : = mk.....string(0,3);
q : = mk.....string(3,6);
a : = mkJlt(p, q);

will assign the pattem 'abc'l'def' to a. The correspondence between such functions
and the alternatives in the grammar PAT is:

mk_alt(p,q) ~ piq
mk.....subs(p,q) ~ p q
mk_comp(c,e,p) ~ <c,e,p>
mk.....string(from,to) ~ <string-literal>
mk_cdsbas(p,id) ~ cdsbas(p,id)
mk__imsbas (p,id) ~ imsbas(p,id)

Note that mk.....string constrocts a. new string by extracting the characters withindices
f rom, f rom + 1, ... , to - 1 from the global subjectstring. Also note that mk_alt,
mk.....subs, mk_comp, mk__imsbas and mk_cdsbas do not construct. a new pattem if one
of their arguments is nu/I, e.g.

mk_alt(p,null) ~ p
mk_alt(null,q) q
mk.....subs(p,nu/1) ~ nu/I
mk.....subs(null,q) ~ nul/
mk_comp(c,e,null) null
mk__imsbas(null,id) nul/
mk_cdsbas(null,id) nul/

Similar functions exist for the grammar EXP :

mk_assign(id,v) '"""' id : = v
mk_expr(el,e2) '"""' el ; e2

These fnnctions are used to construct 'remembered expressions' as required for the
modeling of conditionat subject assignment (see below).

We now present the forma! definition foliowed by a detailed explanation.

40 DESIGN CONSIDERATIONS FORSTRING PROCESSING

proc match(curs, expr, pat)
(var cursl, curs2, exprl, expr2, P, PI, Q, Ql;

var rpatl, rpat2, str, id;

#a# if {{pat == P: <pattem-primary> 'I' Q: <pattern-primary> } }
then

if [cursl, expri, PI] : = match(curs, expr, P)
then

return([cursi, expri, mk_comp(curs, expr, mk_alt(Pl, Q))])
elif [curs2, expr2, Ql] : = match(curs, expr, Q)
then

return([curs2, expr2, mk_comp(curs, expr, Ql)])
el~ .

freturn
fi

#b# elif { {pat == P:<pattern-primary> '--' Q: <pattern-primary> } }
then

if [cursl, expri, Pl] : = match(curs, expr, P)
then

if [curs2, expr2, Ql] : = match(cursl, e.iprl, Q)
tben

rpatl : = mk_comp(cursl, exprl, Ql);
rpat2 : = mk_subs(mk_comp(curs, expr, PI), Q);
return([curs2, expr2, mk_alt(rpatl, rpat2)])

el~

fi

if PI --== nul/
tb en

fi

if [curs2, expr2, Ql] : = match(curs, expr, mkJubs(Pl, Q))
then

return([curs2, expr2, Ql])
ft

fi;
freturn

#C# elif {{pat == '(' P:<pattem> ')' }}
then

return(match(curs, expr, P))
#d# elif {{pat == str:<string-literal> }}

then
if cursl : = litmatch(curs, str)
then

return([cursl, expr, nul/])
el~
· freturn

fi
#e# elif { { pat == id: <identifier> } }

then
P : = INITIAL_ENV.binding(id);.

3.4.2. The immediate/conditional model

if [cursi, expri, PI] : = match(curs, expr, P)
then

return([cursi, exprl, PI])
el se

freturn
fi

f # elif {{ pat == '*' id: <identifier> } }
then

P : = CURRENT_.ENV.binding(id);
if [cursi, expri, PI] : = match(curs, expr, P)
then

return([cursi, expri, PI])
el se

freturn
fi

#g# elif {{pat=='<' cursi:<integer-constant> ','
expri:<expression> ',' P:<pattern> '>' }}

then
if [curs2, expr2, PI] : = match(integer(cursi), expri, P)
then

return([curs2, expr2, PI])
el se

freturn
fi

#h# elif {{pat == IMSBAS '(' P:<pattern-primary> ',' id:<identifier> ')' } }
then

if [cursi, expri, PI] : = match(curs, expr, P)
then

CURRENT_.ENV.bind(id, mk....string(curs, cursi));
rpati : = mk_comp(curs, expr, mk_jmsbas(PI, id));
return([cursi, expri, rpati])

else
freturn

fi
#Ï# elif {{pat== COSBAS '(' P:<pattern-primary> ',' id:<identifier> ')' }}

then
if [cursl, expri, PI] : = match(curs, expr, P)
then

expr2 : = mk_expr(expri, mk_assign(id, mk....string(curs, cursi)));
rpati : = mk_comp(curs, expr, mk_cdsbas(Pl, id));
return([cursi, expr2, rpati])

el se
freturn

fi
#j# elif { {pat == IMACT '(' expri: <expression> ')' }}

then
eval(exprl);
return([curs, expr, nul/])

#k# elif {{pat== CDACT '(' expri:<expression> ')'}}

41

42 DESIGN CONSIDERATIONS FORSTRING PROCESSING

tben
return([curs, mk_expr(expr, exprl), nul/])

#I# else
ERROR

ti
);

The cases #a# to #l# correspond to the various alternatives in the grammar PAT.
Each case will now be discussed in more detail:

a) If the pattem is an alternation of the form P I Q, an attempt is first made to
match the pattem P. If successful, it delivers a new cursor, expression and pattem.
The new cursor value corresponds to the point to which the pattem P has proceeded
in the subject string. The new expression consists of the old expression augrnented by
the conditionat operations encountered during the evaluation of P. The new pattem
(P 1) corresponds to the remaining (untried) alternatives of P. The pattemP 1 I Q is
delivered by the evaluation of P I Q . If the match of P fails, an attempt is made to
match Q. If the latter fails, P I Q fails. If it succeeds, again, a new cursor, expres­
sion and pattem are delivered. In this case the pattem Q 1 is delivered by the evalua­
tion of P I Q.
,b) If the pattem is a subsequentiation of the form P Q, the operations performed
are of a similar nature as the ones performed for alternation.

c) If the pattem consists of a pattem enclosed in parentheses, the enclosed pattem is
attempted.

d) If the pattem is a <string-literal>, it should occur in the subject string, startingat
the current cursor position. This is taken care of by the function litmatch(s). If, for
example, the subject string is 'abcd', then litmatch(l,'bc') will deliver the value 3,
while litmatch(2,'bc') will fail. ·

e) If the pattem is an <identifier>, the corresponding value in the iDitial environment
is used as pattem. In this way the notion of pattem construction, as it exists, for
example, in SNOBOL4 is modeled. Before a pattem match starts, the expression
descrihing the pattem is used to build a data structure which is subsequently used to
control the recognition process. In the formal description, this is refiected by the use
of the initial values of the variables occurring in the pattern.

f) If the pattem is an unevaluated expression of the form •x, the value of x in the
current environment is used as pattem. This introduces the possibility of context sen­
sitive pattems, that are modified dynarnically during the pattem match.

g) lt was already explained above that <compound-pattern>s are a way of represent­
ing the pattem matching state. They consist of a cursor value, an expression descrih­
ing remembered conditionat operations, and a pattern. Evaluation of a <compound­
pattem> amounts to evaluating its pattem component, starting at its cursor value.
Therole of the expressioncomponent is further explained in points i) and k) below.

h) If the pattem is an immediate subject assignment of the form imsbas(P,x), an
· attempt is made to match pattern P. If this is successful, the part of the subject
recognized by P is immediately assigned to variabie x.

i) If the pattem is a conditionat subject assignment of the form cdsbas(P,x), an
attempt is made to match pattem P. lf this is successful, an assignment statement is
constructed that will eventually (i.e. at the erid of the pattem match) assign the

3.4.2. The Îlnl1lediate/conditional model 43

· recognized part of the subject string to variabie x.
j) If the pattem is an immediate action, it is evaluated.

k) If the pattem is a conditionat action, it is appended to the current list of condi­
tionat operations.

I) In all other cases the pattem is syntactically incorrect.

lt is instruclive to trace the series of events taking place durlog a simpte pattem
match {see Figure 3.2). For reasoos of readability, arguments and results that are
equal to the empty string are denoted by a single space character.

match(O, ,('a'i'ab')--'e')
match(O, ,('a'i'ab'))

match(O, ,'a'l'ab')
match(O, ,'a')
returns [1, , 1

returns [l,, <0, ,'ab'>]
returns [l,, <0, ,'ab'>]
match(l, ,'e')
fails
match(O, ,<0, ,'ab'>--'e')

match(O, ,<0, ,'ab'>)
match(O, ,'ab')
returns [2, , 1

returns [2, ,]
match(2, ,'e')
returns [3, ,]

returns [3, ,]
returns [3, ,]

Figure 3.2. Trace of pattern match 'abe'? ('a'l'ab')--'e'.

3.4.3. The reeovery model

3.4.3.1. Overview

This new model was inspired by the concept of recovery blocks. In [Randell75]
it is shown how the reliability of a program can be increased by inserting acceptance
tests at appropriate places in the program. Whenever such a test fails, the program
state is restored to a state at a previous well-defined point, and an attempt is made to
perform the same computation using an alternative algorithm. This process is
repeated until either the result satisfies the acceptance test or no more alternative
algorithms are available. In the latter case, the failure bas to be handled at a higher,
more global, level in the program. To this end the program is split up into (nested)
recovery blocks. Each recovery block starts with a 'begin of recovery block' statement
indicating that a roU-back to this point may take place, and ends with an acceptance
test. The body of the recovery block consists of the various alternative algorithms to
be tried.

44 DESIGN CONSIDERATIONS FORSTRING PROCESSING

This approach clearly bears a certain resemblance to backtracking. Given the
problems with the immediatel conditional model, two further observations led to the
idea that backtracking could be completely replaced by the recovery block method:

o It is desirabie for the programmer to have complete control over the scope of
backtracking.

o A failing pattem component should only be allowed to change the local (inner­
most) but not the global environment. In this way, the side-effects of failing
patterns can be localized.

It is possible to interpret the recovery model in such a way that the above two
requirements are satisfied and that the disadvantages of the immediate/conditional
model disappear. First, alternation and subsequentiation are stripped of their capabil­
ity to remember untried alternatives. Secondly, a single operation is defined for the
control of both backtracking and environment modificati()n. For this purpose the
construction:

try <id1, ... , idn > P1, ... , Pm until po yrt

is introduced, where p 1 , ••• , Pm are pattems to betried successively and po is a pat­
tem to be applied after the successful matcbihg of one of the pattems p 1 , ••• , Pm.
lf po, PI, ... , Pm fait, the environment is restored to the state it was in at the
moment the try construction was entered, except for the values of tbe variables
id 1 , ••• , idn . These variables can be used as a communication channel or window
between the pattemspo ,p1, ... , Pm· In this way, each alternative can inspeet
information supplied by previous (necessarily · unsuccessful) attempts. Note, that the
variables in the window have to be declared elsewhere; the occurrence of a variabie in
a window only establishes the fact that its value will not be recovered.

Since alllanguage aspects related to backtracking have been concentrated in the
try construct, the alternation and subsequentiation of pattems (represented by T and
·--' in the immediatelconditionat model) can now be expressed by the ordinary
Boolean operators and and or. We shall, however, continue to use the sarne notation
in order to make the comparison between the two roodels easier.

The recovery model is superior to the immediatel conditionat model in several
respects:

o lt is possible to save wormation gathered during a failing pattem match in a
way which is more structured than in the immediatel conditionat model.

o lt is much simpter than the immediatelconditional model: the number of
operators is smaller and no unexpected effects can occur by mixing immediate
and conditionat operations. In the immediate/conditional model the program­
roer bas to be a ware of unwanted 'backing into previous alternatives'. Consider
the pattem: ·

'[' --
(expr I

imtJCt(error: ='invalid index')
) --

')'

applied to the string '[a+b}'. On encountering the invalid symbol '}',
automatic backtracking causes the (inappropriate) error message to be assigned

3.4.3. The recovery model 45

to the variabie error. This cannot occur in the recovery model, since the pro­
grammer bas to ask for backtracking explicitly. In the recovery model, one can
formulate the above problem in two ways. The error message alternative can
either be discarded, teading to

'{' --
(expr I

act(error: ='invalid index')
) --

']'

(where 'I' is used as the ordinary Boolean or operator and the action is only
evaluated if expr faits), or it can be remembered explicitly

'[' --
try expr,

act(error: = 'invalid index')
until ']'
yrt

o A reasonably efficient implementation is possible using a cache containing the ·
modifications to the enclosing environment. Such a cache mechanism evenly
distributes the work of saving and restoring the program state, i.e. the amount
of work increases in proportion to the number of modifications to the original
state. The absence of automatic backtracking renders this implementation
metbod feasible. lt is crucial that the beginning and end of a try construct are
known so that the period during which modifications have to be remembered is
well-defined.

An example will illustrate the main properties of the recovery model. Consider

p : = ('a' I 'ab') -- 'c' .

Both 'abc' ? pand 'abd' ? p fail, since backtracking is not automatic. If, on the other
hand, p is defined by

p : = try < > 'a', 'ab' until 'c' yrt

then 'abc' ? p will succeed.

3.4.3.2. Fonnal description

In the recovery model, the pattem language PAT is described by the following
syntax rules

<pattem> :: = <pattem-primary> [('I' I '-- ' } <pattem-primary>] .
<pattern-primary> :: =

'(' <pattem> ')' I
<string-literal> I
<identifier> I
'•' <identifier> I
SBAS '(' <pattern-primary> ',' <identifier> ')' I
ACT '(' <expression> ')' I
TRY <window> { <pattern> ', '} + UNTIL <pattern> YRT •

<window> :: = '<' { <identifier> ',' } * ·' >' .

46 DESIGN CONSIDERATIONS FORSTRING PROCESSING

The syntax rules for <expression>s and their meaning have already been described in
. Section 3.4.1. The semantics of patterns is described by the function

match: CURS X PAT- CURS U FAIL.

This lunetion attempts to match a given pattem starting at a given cursor position
and delivers a new cursor position. In contrast to the immediate/conditional model,
it is not necessary to accumulate expressions descrihing conditional operations, nor to
remember untried alternatives. We now present thesemantics of pattern matching in
the reoovery model.

proc match(curs, pat)
(var cursl, curs2, P, PI, Q, Ql,pats, val;

var str, expr, id, windowvars, SA VED_ENV;

#a# if { {pat == P: <pattern-primary> 'I 1 Q: <pattern-primary> } }
then

if cursl : = match(curs, P)
then

return(cursl)
elif curs2 : = match(curs, Q)
then

return(curs2)
else

freturn
ft

#b# elif {{pat == P:<pattern-primary> '-- 1 Q:<pattern-primary> }}
then

if cursl : = match(curs, P)
tb en

if curs2 : = match(cursl, Q)
then

return(curs2)
el se

freturn
ft

ft;
freturn

#c# elif {{pat=='(' P:<pattern> ')'}}
then

return(match(curs, P))
#d# elif { {pat == str: <string-literal> }}

then
if curs l : == litmatch(curs, str)
then

return (curs 1)
else

freturn
ft

#e# elif { {pat == id: <identifier> } }
then

3.4.3. The recovery model

if cursi : = match(curs, INITIAL_ENV.binding(id))
then

return(cursl)
el se

freturn
fi

#f# elif { {pat == '•' id:<identifier> } }
then

if cursl : = match(curs, CURRENT_ENV.binding(id))
then

return (curs 1)
el se

freturn
fi

#g# elif {{pat== SBAS '(' P:<pattern-primary> ',' id:<identifier> ')' }}
then

if cursl : = match(curs, P)
then

CURRENT_ENV.bind(id, mkJtring(curs, cursl));
return(cursl)

el se
freturn

fi
#h# elif { {pat == ACT'(' expr:<expression> ')' } }

then
eval(expr);
return(curs)

#Î# elif { {pat == TRY '<' windowvars: { <identifier> ',' }* '>'
pats: { <pattern> ', '} +
UNTIL Q: <pattern> YRT } }

then
SA VED_ENV: = copy(CURRENT _EN V);
for Pin pats
do if cursi : = match(curs, P)

then

fi;

if curs2 : = match(cursl, Q)
then

return (curs2)
fi

for id in windowvars
do SA VED_ENV.bind(id, CURRENT _ENV.binding(id)) od;
CURRENT _ENV : = copy(SA VED_ENV);

od;
freturn

#j# else
ERROR

fi
);

47

48 DESIGN CONSIDERATIONS FORSTRING PROCESSING

Cases #c#, #d#, #e#, #f#, #g#, #h# and #j# have direct counterparts in the
· immediatel conditional model and need no further explanation. Only the remaining

cases wiJl be discussed.

a) If the pattem is an alternation of the form P I Q, P is attempted fust. If success­
ful, the new cursor value is returned. If not successful, Q is attempted. Again, if Q
is successful, the cursor delivered by Q is returned. In all other cases P I Q faits. It
is interesting to compare the simplicity of this alternation operator with the much
more complex alternation operator in the immediate/conditional model.

b) lf the pattem is a subsequentiation, it is handled in a similar fashion. Again, oom­
pare this operatorwithits counterpart in the immediate/conditional model.

i) If the pattern.is a try construct of the form

try <idt, ... , id"> Pt, ... , Pm untüpo yrt

the current environment is copied fitst. The patterns p 1 , ••• , p". are attempted next
from left to right. If one of them matches and po matches, the try construct as a
whole succeeds. When either one of p 1 , ••• , Pm fails or po fails, the environment is
restored except for the variables id 1 , • • • , idn whose values are retained. lt is
assumed bere that all variables in the window have a well-defined value at the
moment the try construct is entered.

3.5. Unifieation of pattem and expression langgage

In the preceding sections a carefut analysis was made of two backtracking
· models. By choosing the right primitive operations we were able to develop a simpte,
but powerfut backtracking method. Is it possible to introduce further simplifications?
To do this, we fitst explicitly fomlUlate our basic assumptions:

D A pattem matching model is characterized by a Ianguage PAT of patterns
(with associated deftnition function match) and a language EXP of expressions
(with associated deftnition function eva/).

D The deftnition lunetion match assumes the existence of a subject ·string and
keeps track of the progress of the match by means of an integer-valued cursor.
The only assumption regarding the data type of the subject string is made by
the function litmatch that does the actual. string matching.

These assumptions immediately lead to two guidelines for making further
simplifications:

D Unify the languages EXP and PAT.

o Remove all dependencies on strings as the domain of pattem matching.

The unification of the Ianguages EXP and PAT amounts to removing the
lingulstie diehotomy in pattern matching languages, so eloquently described in
[Griswold80). This unification can be achieved by eliminating the language PAT
completely. This is done by modeling all operations in PAT by operations in EXP
and by extending EXP when necessary in the process. Typical examples of this
modeling are:

3.5. Unification of pattem and expression language 49

Operation in PAT: Modeled in EXP by:

pattem match fails - add success/fail
or succeeds mechanism to EXP.
string-literal - lit (string-literal),

where fit is a built-in string
matching procedure defined in EXP.

alternation - Boolean or.
subsequentiation - Boolean and.
action - expression.
unevaluated expression - procedure call.
subject assignment - ordinary assignment.
try construct - add try construct to EXP.

lt is surprising that this redefinition of EXP also eliminales all dependendes on
string pattem matching: the special role played by the subject string and cursor is no
longer cared for and the recovery mechanism (embodied in the try construct) is
sufficiently powerfut that it permits the saving and restoring of variables with arbi­
trary values. Such variables could be used to describe the progress of a pattem match
in some arbitrary, user-defined, domain.

These ideas form the conceptual basis for subsequent chapters.

3.6. References for Cbapter 3

[Dahl70] Dahl, 0-J, Myhrhaug, B. & Nygaard, K., "SIMULA lnformation,
Common Base Language", Norwegian Computing Centre, S-22,
1970.

[Druseikis75] Druseikis, F.C., "The design of transportable interpreters" (disserta­
tion), S4D49, University of Arizona, 1975.

[Doyle75] Doyle, J.N., "A generalized facility for the analysis and synthesis of
strings, and a procedure-based model of implementation" (thesis),
S4D48, University of Arizona, 1975.

[Farber64) Farber, D.J., Griswold, R.E. & Polonsky, I.P., "SNOBOL, a string
manipulation language", Journalof the ACM, 11 (1964) 1, 21-30.

[Gimpel73] Gimpel, J.F., "A theory of discrete patterns and their implementa­
tion in SNOBOL4", Communications of the ACM, 16 (1973) 2, 91-100.

[Griswold71] Griswold, R.E., Poage, J.F. & Polonsky, I.P., The SNOBOL4 Pro­
gramming Language, Second Edition, Prentice-Hall, Engtewood
Cliffs, N.J., 1971.

[Griswo1d76] Griswo1d, R.E. & Hanson, D.R., "An overview of the SL5 program­
ming language", SL5 project document S5LDlb, The University of
Arizona, Tucson, Arizona, October 9, 1976.

[Griswold80] Griswold, R.E. & Hanson, D.R., "An alternative to the use of pat­
terns in string processing", Transactions on Programming Languages
and Systems, 2 (1980) 2, 153-172.

50 DESIGN CONSIDERATIONS FORSTRING PROCESSING

[Randell75] Randell, B., "System structure for software fault tolerance", in:
Proceedings of the International Conference on Reliable Software,
SlOPLAN Notices, 10 (1975) 6, 437-449.

[Stewart75] Stewart, G.F., "An algebraic model for string patterns", Second
Symposium on Principles of Programming Languages, ACM, 1975,
167-184.

51

4. AN OVERVIEW OF THE SUMMER PROGRAMMING LANGUAGE1

4.1. Introduetion

The language SUMMER bas been designed for the solution of problems in text
processing and string manipulation. It consistsof a relatively small kernel wbicb bas
been extended in several directions. The kernel supports:

0 integers

0 strings

0 classes

0 procedure and operator definitions

0 success-directed evaluation

0 control structures

0 recovery of side-eifects.

lt bas been extended with:

0 reals

0 files

0 arrays (sequences of values)

0 tables (associative memories)

0 pattern matching

0 string synthesis.

Pattem matching has been completely integrated with the success-directed
expression evaluation mechanism. It will be shown that the operations in the kernel
are sufficient to allow generalization of pattem matching in two directions:

o Sirnultaneous pattern matches can be expressed, which mutuaUy affect each
other.

o Patteen matching can be generalized to domains other than strings.

In the following sections the novel features of SUMMER and tb~ motivation for
their ioclusion in the language will be discussed. Furthermore, a simplified version of
the pattern matching extension is described in some detail.

4.2. Success·directed evaluation and control structures

The expression evaluation mechanism of SUMMER is somewhat unusual and
merlts special attention. Expressions consist of a juxtaposition of operators (like the
addition operator: '+' or the string concatenation operator: '11') and operands (like
the numeric constant 10, the string constant 'abc', the identifier x oe the procedure
eaU p(IO,x)). Some operations can deliver only a value, but others can potentially
fail. The syntactic form of an expression completely determines the steps to be taken
when an operation in a Subexpression fails. The evaluation of sirnple expressions like

1) This chapter is a revi.sed version of [Klint80j.

52 OVERVIEW OF SUMMER

a + fibonacci(1)
x : = duplicate(c, 3) 11 ' times'
x >y
x : = duplicate(an.Jdentifier(s), 5)

is aborted immediately when an operation in a Subexpression fails and failure is sig­
nalied to constrocts surrounding the expression. In the last example, faiture of the '
expression an.Jdentifier(s) may abort evaluation of the whole expression before dupli­
cate even gets called. Note that failure is a transient entity and must be captured at
.the moment it occurs. The evaluation of more complex constrocts in the case of a
failing Subexpression depends again completety on the syntactic form of each con­
struct. There are three cases:

I) The construct is capabte of handling the failure itself. This is the case if the
failing expression E occurs in contexts like:

if E tben ... else .•• ft
while E do ... od

El··· (Boolean (McCarthy) or operator}

2) The construct is not capabte of handling the failure itsetf, but is (perhaps
dynamically) enclosed in a construct with that capability, like:

E & . . . {Bootean (McCarthy) and operator}
return(E) {return value from a procedure}

In this way failure can be passed to the caller of the procedure in which the
failing expression occurs (see below).

3) Neither of the above two cases applies. This results in abnormal program ter­
mination with the error message 'Unanticipated failure'. In

x : = read(input); print(x);

the call to the read procedure may fail (on end of file). This faiture will not be
detected by the program itself and hence execution of the program will be
aborted.

This expression evaluation scheme was designed to be concise and powerful,
but at tbe same time an attempt was made to proteet the programmer against unanti­
cipated or unwanted failure.

Conciseness is obtained in two ways.

In the first place, by computing a value and a faiture signal in the same expres­
sion. This allows, for exampte

wbile fine : = read(input) do ... od

insteadof

wbile -eof (input)
do line : = read(input);

if io_errors(input) then ... ft;

od;

4.2. Success-directed evaluation and control structures 53

Secondly, by disregarding the souree of faOure and focusing attention on the
absence of faiture (i.e. success) during the evaluation of the expression. From now on
we will use 'succeeds' as a synonym for 'does not fail and delivers a value'. Consider:

if (read(input) 11 read(input)) -= expected
then

error('Bad input')
6

where ·-==' denotes the inequality comparison between strings and expected bas the
expected input string as value. Three sourees of failure can be identified bere: the
two read operations and the inequality test can fail. The programmer, however, is in
most cases interested only in the fact that the input file does not conform to bis
expectations. This is more manifest in the above lormulation than in:

11 : == read(input);
if eof (input)
then

error('Bad input')
else

6

12 : = read(input);
if eof (input) I (11 1112 -= expected)
then

error('Bad input')
6

In principle, this argument works in two directions: since the souree of failure may be
lost, the programmer may be misled about the actaal souree of failure. lt is our
experience that this setdom happens, and in all cases where the distiBetion is impor­
tant, it can be expressed easily.

Proteetion is achieved by prohibiting unanticipated failure. This turns out to
be a frequent souree of run-time errors, which always correspond to 'forgotten' or
'impossible' failure conditions. A direct consequence of this proteetion scheme is that
one can write assertions (i.e. expressions which should never fail) in a program. A
run-time error occurs if such an assertion is false.

Another noteworthy consequence of this evaluation mechanism is its ability to
let a procedure report failure to any procedure which called it (in)directly. This effect
is obtained by adhering to the programming convention that procedure bodies have
the form E 1 & · · · & En . If one of the expressions E1 fails, this failure is passed to
the caller of the current procedure. If that calling procedure bas the same form, it
will not itself handle the failure but pass it on to its caller. In this way, low-level pro­
cedures need not be aware of failure at all and high-level procedures can detect the
failure and take appropriate measures. Some programming languages (e.g. ADA, CLU)

have special facilities for handling exceptions of· this kind; in SUMMER they can be
handled by the standard expression evaluation mechanism.

54 OVERVIEW OF SUMMER

4.3. Recovery of skie-effects

For the solution of problems such as beuristic searching, or parsing languages
with context-sensitive or non-LL(l) grammars, it is ofien necessary to attempt a solu­
tion and to reeover from its side-effects ü that attempt is not successful. Many '
schemes have been proposed for the lormulation of such backtracking algorithms, but
most involve either opaque control structures or allow unsatisfactory control over
modifications of the program state (i.e. global· variables).

SUMMER provides a special language construct for recovering from the side­
effects caused by the evaluation of a failing expression. This construct has the form

tryE 1 ,E,_, ... , E" unti1E0 yrt

and is, to a first approximation, equivalent to

(Epl Eo) I ·.. I (E,. & Eo)

Before the evaluation of each (E1 & E0) starts, the complete program state (values of
all variables, status of all input/output operations) is saved. 1f the evaluation of the
subexpl'ession succeeds, the saved program state is discarded and the try construct as
a whole succeeds. lf the evaluation fails, the saved program state is restored and
evaluation of (Et+ 1 & E 0) is attempted in a similar manner. The try construct fails ü
none of the subexpressions succeeds. Completely automatic backtracking can be
achieved by nesting try constructs. This simpte scheme is well suited to the formula·
tion of problems occurring in pattem matching applications as will be seen in 4.5.2.

There are two exceptions to the rule that the whole program state is restored
when an exprèssion contained in a try construct fails:

o Opetations on an input/ output stream that corresponds to an interactive termi·
nal are not recovered. In many situations it is not desirabie to reeover these
streams, and in some cases the meaning of such a recovery may be non-obvious
or confusing. In SUMMER these streams can be used to interactively control and
monitor the backtracking process.

o The local variables of the procedures in. wbich the try construct occurs are not
recovered. In this way information about the reason for failure can survive the
faiture itself. In Setion 3.4.3 a similar effect was achieved using a 'window' of
variables whose values were never recovered.

It is obvious that saving and restoring complete program states would lead to
intolerable inefficiencies when implemented naively. Fortunately, there exists an
implementation technique that eliminates most of the run-time overhead involved.
The recovery cacbe, which was originally invented to increase software reliability
[Randell75], bas been adapted to act as a device foJ;' monitoring program state
modifications in those situations where it may be necessary to restore a previous pro­
gram state (i.e. while evaluating expressions contained in a try construct). A recovery
cache consists of (name, value) pairs. The name part may refer to simpte variables,
array elements, class components or input/ output streams. A new cache is created
when the evaluation of a try construct begins, and from that moment, all assignments
to variables are monitored. Whene-Ver an assignment is about to be made to a vari­
abie whose name does not yet occur in the cache, its name and its old value before
the assignment are entered into the cache. Assignments to components of structured
objects (arrays, class instances) and modifications of input/output streams are

4.3. Recovery of side-etfects 55

registered in a similar way. The recovery cache is discarded completely if the evalua­
tion of the try construct succeeds, but in the case of failure, the information in the
cache is used ·to restore the program to its state at the moment that the cache was
.created (i.e. the try construct was entered). Sinee recovery caches may be nested, 'dis­
carding' may mean: merging the information in the current cache with that in the
previous one. In this manner, the information in the previous cache is still sufiicient
to describe all modifications which have been made sinee that cache was created. ~

4.4. Procedures, operators and classes

In this section the remaining features of the SUMMER kemel are summarized.

Procedures have a fixed number of parameters, which are, in principle, passed
by value. Procedures may either return zero or more values, or they may fail. The
former is achieved by a return-expression of the form return or return(expression).
The latter is achieved by a return-expression of the form freturn (failure return).
Returning a failing expression is equivalent to a failure return (e.g. return(3 > 4) is
equivalent tofreturn).

An operator is defined by associating a user,defined operator symbol with a
procedure which bas one or two parameters. ·

Classes are the only available data structurilig mechanism and have been
inspired by the class concept in SIMULA [Dahl70]. A class · declaration describes the
properties of a group of related entities. One particular entity is described by iostan­
üating (i.e. making an instanee of) the class declaration and filling in the specific pro­
perties of that entity. For example, all entities of the class person may have a name
and an age. An individual person can be described by an instanee of the class person
with the appropriate details (e.g. 'John', 36) filled in. This scheme equally applies to
built-in classes like integer and string, as well as to user-defined classes like the class
person just described. All values in SUMMER are thus instances of some class.

Nothing bas so far been gained when oomparing classes with, for example,
records in PASCAL. The major ditferenee between the two sterns from the fact that
PASCAL records are passive (i.e. a record resembles a variabie and is only a container
of values) and unprotected (i.e. all components of a record are freely accessible) while
classes are not. A class can be considered to be active, sinee it may contain locally
declared procedures to manipulate the information in each instanee of that class (e.g.
increment a person's age) or to perform computations based on that information. A
class is protected since the access to the individual information in the class instanee is
completely controlled by its class definition. A simple definition of person might be:

class person(name, age)
begin fetcb name, age;

store age;
endperson;

Here name and age may be used from the outside of the class instanee, but only age
may be modified, i.e. may occur on the left hand side of an assignment. Some exam­
ples of the use of this class are:

56 OVERVIEW OF SUMMER

friend: = person('John', 36);
print(friend.name);
friend.age : = friend.age + 1;

A more restrictive version of person might be:

elass person(name, age)
begin fetch name, age;

store age : grow __older;
proe grow_older(new_age)
(if new_age >= age

);

then
age : "" new_age

el se
print('Did you find the elixir of life?')

fi

endperson;

Tbis definition prescribes that all assignments to age are channeled through the pro­
cedure grow_older which ensures the monotonicity of age. Instances of this class are
used in precisely the same manner as in the examples given previously.

A second example of class declarations has to do with the generation of unique
labels of the form 'Ll', 'L2' and so on. This might, for example, be used in a com­
piler. A declaration for UniqueLabels looks like:

(dass UniqueLabel(prejix, start)
begin fetch generale, reset;

1
var progress;
proe generate()
(progress : .,. progress + 1;

return(prejix 11 string(progress))
);
proe reset() (progress : = start);

init: progress : - start
end UniqueLabel;

Some applications of this class are:

L : • UniqueLabei('LOOO', -1);
M: = UniqueLabel('M', 10);
print(M.generate); # prints 'Mil' #
print(L.generate); # prints 'LOOOO' #
print(M.generate); #prints 'Ml2' #
M.reset;
print(M.generate); # prints 'Mil' #

4.4. Procedures, operators and classes 57

Summarizing, a class declaration consists of:

o A class name and a list of format parameters. The class name is used as name
for the creation procedure for instances of the class. The actual parameters are
used to provide initia) values for that instanee.

o Fields, which are used either to contain information related to the instanee (e.g.
the name and age fieldsin an instanee of the class person), or to hold informa­
tion local to the class instanee (the variabie progress in an instanee of Uni­
queLabe{). Permissions for accessing and/ or modifying the fields of a class
instanee from the outside have to be stated explicitly by using fetch and store.

The fields of a class are accessed by means of the 'dot' notation. The type of the left
operand in a field selection is used to disambiguate 'overloaded' fields, for which
definitions occur in more than one class.

Some additional features exist in the language to accommodate the use of
classes. In sequenees like

a : = S.x; b : = S:Y; c : = S.z(IO)

it is convenient if the prefix 'S.' can be factored out. PASCAL uses the construct

with record_variable do begin . . . end

for this purpose. All field referenees that occur inside 'begin ... ener are automati­
cally prefixed with record_variable. In this notation the above example would
become:

with S do begin a : = x; b : = y; c : = z(IO) end

Unfortunately, this is not sufiicient for the applications we have in mind, where it is
not unusual for many procedures to operate on the same class instanee. This is illus­
trated by a set of parsing procedures that operate on one subject string. The PASCAL
approach bas the disadvantage that this common class instanee must either be passed
as an argument to all procedures involved or must be assigned to a global variable;
all procedure bodies must in that case be enclosed in a with construct. This problem
can be circumvented as follows. The SUMMER construct2

scan S for E rof

introduces a new incamation of a common variabie ('subject') each time the construct
is encountered at run-time and assigns tbe class instanee S to it. All occurrences of
fields from the class to wbich S belongs are now prefixed with the common global
variabie in the same way as is done in PASCAL. The scan construct is more general,
however, in the sense that it not only affects E itself, but also all procedures called
directly or indirectly as a result of the evaluation of E, while in PASCAL the effect is
restricted to the expressions which are statically enclosed in the body of the with con­
struct. If the scan construct is used in a nested fashion, the previous value of the
common global variabie is saved and restored properly on exit from the current scan
construct. This also applies to the case when tbe scan construct is left prematurely by
means of a return statement. In summary, the scan construct introduces a restricted
form of dyoamie binding.

2) Inspired by the 'scan S using E' construct in Icon [Griswold79].

58 OVERVIEW OF SUMMER

4.5. A pattem matching extension

4.5.1. String Pattem Matching

We wiJl now show how a string pattem matching system can be buildon top of
the SUMMER kemel. Pattem matching is done on a string text which is indexed by an
integer cursor. For the sake of this discussion a very simpte system will be defined,
which only supports the following operations:

text:

cursor:

lit(S):

break(S):

span(S):

Gives the value of text.

Gives the current value of cursor.

Literally recognize the string S. If S occurs as substring in text at the
current cursor position, deliver S as value and move the cursor beyond
S. Otherwise report failure.

Recognize a substring of text that starts at the current cursor position
and consists entirely of characters not occurring in S and is followed by
a terminating character which does occur in S. If such a substring
exists, return it (without the terminating character) and move the cursor
to the terminating character. Fail if such a substring does not exist.

Recognize the longest non-empty substring of text that starts at the
cuerent cursor position and consists entirely of characters which occur in
S. If such a substring exists, then return it as value and move the cur­
sor beyond it. Fail if such a substring does not exist.

The following class definition implements this pattem matcher:

class scanJtring(text)
begin fetch lit, break, span, text, cursor;

var cursor;
proc /it(s)
(if cursor + s.size < = text.size & text.substr(cursor, s.size) = s

tben

);

cursor : = cursor + s.size;
return(s)

else
freturn

fi

proc break(s)
(var newcursor : = cursor;

wbDe newcursor < text.size

);

do if contains(s, text[newcursor])
then

fi;

var result : == text.substr(cursor, newcursor - cursor);
cursor : = newcursor;
return (result)

newcursor : = newcursor +
od;
freturn

4.5.1. String Pattem Matching

proc span(s)
(var newcursor : = cursor;

);

wbfte newcursor < text.size & contains(s, text[newcursor])
do

newcursor : = newcursor + 1
od;
if newcursor > cursor
then

var result : = text.substr(cursor, newcursor - cursor);
cursor : = newcursor;
return (result)

else
freturn

ft

proc contains(s, c)
{ var cl;

);

for cl ins
do

if cl == c then return fi;
od;
freturn;

init: cursor : = 0;
end scarL.string;

59

The following example illustrates how identifiers starting with the letter 'X' can be
recognized:

proc identifier(s)
(var t : = scan_.string(s);

return(t.lit('X') & (t.span(letter _or _digit) I t./it(")))
)

In these examples we assume letter = 'abcdefghijklmnopqrstuvwxyz', digit =
'0123456789' and letter_or_digit = letter 11 digit. Note tbat the normal Boolean
operators and ('&') and or ('I') are used for combination. Hence there will be no
backtracking or reversal of effects if the match fails. The expression t./it(") always
succeeds and covers the case when the identifier consists of a single 'X'. This example
can be rewritten in a more ooncise form if we use the scan construct:

proc · identifier(s)
(scan scan_.string(s)

for

)

return(lit('X') & (span(letter _or _digit) llit(")))
rof

A final example may illustrate tbe use of the value retumed by pattem match­
ing procedures. The problem is to extract allletters from a given string. For example
'a,b,c' gives 'abc'. A procedure to achleve this can bedefinedas follows:

60

proc extract_letter(s)
(var result : = ";

scan scan_string(s)
,for

while break(letter)

OVERVIEW OF SUMMER

do result : = result 11 span(letter) od
rof;
return (result)

)

In SUMMER, pattem matching and backtracking have been completely
separated. lt aune as a shock to us to discover that the majority of pattem matching
problems which we had solved previously by means of implicit backtracking, oould be
solved without any backtracking at all! Many problems of practical importance cao
be solved using LL(k) or LR(k) techniques and are at worst only locally ambiguous.
Using completely automatic backtracking as, a parsing technique is rather wasteful
under such circumstances and this suggests that the close interaction between pattern
matching and backtracking, which can be found in several languages, should be
reconsidered. See Chapter 3 for an extensive discussion of this topic.

How can pattem matching with automatic backtracking be obtained? Consider
the expression:

(lit('ab') llit('a')) & lit('bc')

In the pattem mateher developed above, the alternative /it('a') is discarded as soon as
a substring starting with 'ab' is encountered, since we are using McCarthy and and or
operations { 4.2}. The string 'abc' cannot he recognized in this way. But if we rewrite
the expression as

try lit('ab'), lit('a')
untillit('bc')

yrt

then the side-effect recovery mechanism implicit in the try construct automatically
restores the initial cursor value and attempts the second alternative if lit('bc') fails the
first time. No special attention need be paid to the cursor: it is an ordinary variabie
which is saved and restored automatically by the try construct just as any other vari­
able.

4.5.2. Generalized pattem matching

In most pattem matching systems there is only one subject string involved in
the pattem match. In our scheme, this restrietion can be removed without introduc­
ing any new concepts as an example will show. The following (rather artificial) prob­
lem is to ensure that two strings S 1 and S 2 conform to the following rules:

o S 1 is of the form c 1 ;c2; • • • ;en; where c; is a (perhaps empty) sequence of
arbitrary characters except for the character ';'.

o Fora given Sl, S2 has the form d 1d2 ••• dn, and either d; =c; or
d; = reverse(c1) holds. Acceptable values for S2 with S 1 equal to 'ab;cde;f;'
are 'abcdef', 'abedcf', 'bacdef' and 'baedcf'.

4.5.2. Generalized pattem matching

The following program checks whether a given S 1 and S 2 satisfy this relation:

si : = scan_string(Sl);
s2 : = scan_string(S2);
scan sl
for

while (n : = break(';')) & fit(';')
do

if- scan s2 for lit(n) ilit(reverse(n)) rof
then

fi
od

rof;

error(' check fails')

if st.cursor = Sl.size & s2.cursor = S2.size
then

print('check succeeds')
el se

error(' check fails')
fi

61

Each scan_string object maintains its own cursor. The innermost scan con­
struct operales each time on the same scan_atring instanee s2 whose cursor value gets
modified. This allows the innermost pattem match to continue where it left off the
previous time.

From the preceding paragraphs it will he clear that pattern matching as
presented bere, does not depend on the fact that strings are used as the basic unit of
recognition. One can, for example, easily imagine pattern matching on an array of
strings. The 'cursor' must then he replaced by a pair of values to maintain the
current position, and basic scanning procedures like xlit, ylit, xspan and yspan must
he defined. It may he expected that a system like ESpl [Shapiro74] can he defined in a
straightforward manner using the primitives from the SUMMER kemel.

4.6. Related work

SUMMER was inspired by and profited from ideas in SNOBOL4 [Griswold7l] and
SLS [Griswold76]. The metbod adopted for the integration of pattern matching and
expression evaluation (see Chapter 3) was inspired by Icon [Griswold79].

The major ideas introduced by SUMMER are the evaluation model which probi­
bits unanticipated failure, the recovery from side-effects in failing expressions, the use
of recovery caches as an implementation technique and the separation of pattern
matching and backtracking which allows more general pattem matching in domains
other than strings. /

4.7. Referentes for Chapter 4

[Dahl70] Dahl, 0-J, Myhrhaug, B. & Nygaard, K., "SIMULA lnformation,
·Common Base Language", Norwegian Computing Centre, S-22,
1970.

62

[Griswold71]

[Griswold76]

[Griswold79]

[Klint80]

· [Randell75]

[Shapiro74]

OVERVIEW OF SUMMER

Griswold, R.E., Poage, J.F. & Polonsky, I.P., The SNOBOL4 Pro­
gramming Language, Second Edition, Prentice-Hall, Engtewood
Cliffs, N.J., 1971.

Griswold, R.E. & Hanson, D.R., "An overview of the SL5 program­
ming language", SL5 project document S5LD1b, The University of
Arizona, Tucson, Arizona, October 9, 1976.

Griswold, R.E. & Hanson, D.R., "Reference Manual for the Icon
Programming Language", TR 79-1, The University of Arizona, Tuc­
son, Arizona, 1979.

Klint, P., "An overview of the SUMMER programming language",
Conference Record of the 7th Annua/ ACM Symposium on Principles
of Programming Languages, ACM, 1980, 47-55.

Randell, B., "System structure for software fault tolerance", in:
Proceedings of the International Conference on Reliab/e Software,
SlOPLAN Notices, 10 (1975) 6, 437-449.

Shapiro, L.G., "EsP3
: a 1anguage for the generation, recognition and

manipulation of line drawings", Thesis, TR 74-04, University of
lowa, 1974.

63

5. FORMAL LANGVAGE DEFINITIONS CAN BE MADE PRACTICAL1

5.1. ne problem

' . . . The metalanguage of a forma/
definition must not become a /anguage
known to only the priests of the cult.
Tempering science with magie is a sure
Wt9' to return to the Dark Ages.' [Mar­
cotty76]

Programming languages are being designed using pre-scientific metbods. Titere
is of course no substitute for experience, taste, style and intuition, but a scientific
design methodology to support tbem is lacking. Methods for descrihing programming
languages are somewhat more developed; but most definitions are eitber ambiguons
and inaccurate, or excessively formal and unreadable. In general, a language
definition metbod should:

D help tbe language designer by giving insight into the language he or she is
designing, and by exposing interactions tbat might exist between language
features. The definition should at the same time be a pilot implementation of
tbe defined language, or it should at least be convertible into one. It is
assumed bere, tbat design and definition can best be carried out simultaneously.

D help tbe language implementor by providing him witb an unambiguous and
complete definition tbat is capable of 'executing' small programs in cases where
the implementor is not sure about all implications of a partienlar language
feature.

D help the user by providing him witb a precise definition in a language witb
which heisnot too unfamiliar.

These three goals impose different and to a eertaio extent COntradietory requirements
on tbe definition metbod to be used. In particular, it seems ditticuit to combine preci­
sion and readability in one metbod, since a precise definition has to use. some formal­
ism into which the reader has to be initiated and such a definition will have a ten­
dency to become long and unreadable. This chapter is devoted to an experiment witb
à language definition metbod tbat may be considered as a tentative step towards satis­
fying tbe above requirements.

The defined language is (of course) SUMMER. The definition metbod is similar
in spirit to tbe SECD metbod [Landin64], i.e. it is an operational language definition
metbod which uses recursive functions and syntactic recognition functions tbat associ- ·
ate semantic actions witb all constrocts in tbe grammar of tbe Ianguage. In tbe
metbod presented in this chapter, readability has been considerably enhanced by using
a few imperative constructs and by introducing a very concise notation for parsing
and decomposing the source-text of programs in the defined language. SUMMER,
extended with such parsing and decomposing operations, is used as definition
language. The definition is thus circular (see Sections 5.2.1 and 5.3).

A complete description of tbe definition metbod can be found in part 11 of tbis
thesis. The next section gives only a birds-eye view of tbe description metbod and

I) Tbis chapter is a revised version of [Klint&la].

64 FORMAL LANGVAGE DEFINITIONS

shows some illustrative examples from the SUMMER definition. In Section 5.3 the
metbod as a whole and its application to SUMMER are assessed.

S.:Z. The metbod

S.:Z.l. Introduetion

An evaluation process or interpreter (with the name 'eva/') will be defined that
takes an arbitrary, but syntactically correct, souree text ('the souree program') as
input and either computes the result of the execution of tbat program (if it is a legal
program in the defined language), or detects asemantic error, or does not terminate.
In the latter two cases, no meaning is attacbed to the program. The evaluation pro­
cess operates directly on the text of the souree program. During this process a global
environment is inspected or updated. An environment is a mapping from identifiers
in the souree program to their actual values during the evaluation process. In this
way environments delermine the meaning of narnes in the souree program and are
used to describe concepts sucb as variables, assignment and scope rules.

A fundamental question arises bere: in whicb language do we write the
definition? Several choiees can be made, such as the formalism used in denotational
semantics ([Gordon79], which boils down to a mathematical notation for recursive
functions and domains) or the Vienna Definition Language ([Wegner72], which is a
programming Ianguage designed for the manipulation of trees). This is not the right
plaee to discuss the merlts of these formalisms, but none bas the desired combination
of properties described in the previous paragraph. lnstead of designing yet another
definition language, the defined language itself (this is SUMMER in the examples given
in. this chapter) will be used as definition language. This cboiee bas the obvious
disadvantage that tbe definition is circular, but it bas the practical advantage that
readers who have only a moderate familiarity with the defined language will be able

• to read the definition without great diffi.culty. An extensive discussion of circular
language definitions can be found in [Reynolds72]. lt sbould be emphasized that
there is no fundamental reason for making the definition circular. The definition
metbod described bere would also work if, for instanee, ALGOJ-68 were used as
definition language. In any case, it is essential that the definition language bas power­
fut string operations and allows the creation of data structures of dynamically deter­
mined size. This requirement, for example, makes PASCAL less suited as definition
Ianguage. Cboosing SUMMER as definition language gave us the opportunity of inves­
tigating the suitability of that language in the area of language definition (see Section
5.3).

In the following sections the definition metbod and an example of its applica­
tion (in the SUMMER definition) are described simultaneously. In Section 5.2.2 some
aspects of the use of SUMMER as a metalanguage are discussed. The definition metbod
can be subdivided into the definition of semantic domains (Section 5.2.3) and of the
evaluation process (Section 5.2.4). Further detailed examples from the SUMMER

definition are given in Section 5.2.5.

5.2.2. SUMMER as a metalanguage 65

5.2.2. SuMMER as a metalanguage

This paragraph focuses on some aspects of SUMMER that are used in the format
definition, but were not covered in Chapter 4. Most of the constrocts to be used in
the definition have some sirnilarity with constructs in, for instance, PASCAL and are
assumed to be self-explanatory. Only less obvious constructs that are essential to the
onderstanding of the definition are mentioned bere.

SUMMER is an object-oriented language with pointer semantics. This means
that an object can be modified by assignment and that such modifications are visible
through all access paths to that object. For example,

s : = stack(IO);
t := s;

assigns one and the same stack object to the variables s and t, and

s.push(v)

pushes the value of v onto this stack. As a side-effect the stack is modified in such a
way that subsequent operations on s or t may perceive the effect of that modification.
In the formal definition this is relevant to the concepts 'state' and 'environment',
which are modified in this way.

The language is dynamically typed, i.e. the type of variables is not fixed stati­
cally {as in PASCAL) but is only determined during the execution of the program (as in
LISP or SNOBOL4). Moreover, generic operations on data structures are allowed. If an
operation is defined on several data types, then the procedure to be executed when
that operation occurs is determined by the type of the (left) operand of that operation.

Control structures and data structures are self-explanatory except possibly
arrays and for-expressions.

Arrays are veetors of values, indexed by 0, ... , N I, where N is the number
of elements in the array. If A is an array then the operation A.size will yield the
number of elementsin the array. A new array is created by

lVo, ... , VN-d

or

array(N, V)

In the former case, an array of size N is created and initialized to the values
V0 , ••• , V N - 1• In the latter case, an array of size N is created and all elements are
initialized to the value V. Array denotations are also allowed on the left-hand side of
assignments. This provides a convenient notation for multiple assignments. For
example,

x : == 10; y : = 20; z : = 30

is equivalent to

[x, y, z] : = [10, 20, 30]

and, more generally,

xo := a[O]; · · · ; Xk := a[k]

is equivalent to

66 FORMAL LANGUAGE DEFINITIONS

[xo, ... ,xk]:=a

The general form of a for-expression is:

forVinGdoSod

where V is a variab1e, G is an expression capable of generating a sequence of values
VALt and where S is an arbitrary statement. For each iteration the assignment ·
V:= VALt is performed and S is evaluated. As used in the format definition, the
value of G is either an array (in whicb case consecutive array e1ements are generated)
or G is an array on whicb the operation index is performed (in which case all indices
of consecutive array elements are generated). For example, in

a : = [144, 13, 7];
for x in a do print(x) od

an array object is assigned to the variabie a and the valnes 144, 13 and 7 will be
printed, wbile

for i in a.index do print(i) od

will print the values 0, 1 and 2. Further examples of for-expressions will be found in
~e following paragrapbs.

5.2.3. Semantic domains

A semantic domain is a set, whose elements either describe a primitive notion
in the defined Ianguage (like 'variable' or 'procedure declaration') or have some com­
mon properties as far as the language definition is concerned. The relationship
between these domains is given by a series of domain equations.

In this paragraph the domains in the SUMMER definition ~e briefly described.
The abstract properties of these domains are given in part Il. Here, they are only
introduced informally. First, the domain equàtions are given. Next, the meaning of
each domain is described.

The relationsbip between the domains • BASIC -IN STANCE, COMPOSITE­
INSTANCE, INSTANCE, STORABLE-VA(.,UE, DENOTABLE-VALUE, PRO­
CEDURE, CLASS, LOCATION, STATE and ENVIRONMENT is as follows:

BASIC-INSTANCE =INTEGER U STRING U UNDEFINED
COMPOSITE -INSTANCE = CLASS X ENVIRONMENT
INSTANCE = BASIC-INSTANCE U COMPOSITE-INSTANCE
STORABLE-VALUE = INSTANCE
DENOTABLE-VALUE = STORABLE-VALUE U PROCEDURE U

PROCEDURE

CLASS
STATE
ENVIRONMENT

CLASS U LOCAT/ON
= PROCEDURE-DECLARAT/ON X

ENVIRONMENT
= IDENTIFIER X CLASS-DECLARATION
= LOCAT/ON-:;. (STORABLE-VALUE U {unused})
= IDENTIFIER __,. DENOTABLE-VALUE

Here, IDENTIFIER, PROCEDURE-DECLARAT/ON and CLASS­
DECLARATION are the sets of string values that can be derived from the syntactic
notions <identifier>, <procedure-declaration> and <class-declaration> in the

5.2.3. Semantic domains 67

SUMMER grammar. BASIC-INSTANCE is the domain of primitive values in the
language. COMPOSITE -INSTANCE is the domain of user-defined values.
STORABLE-VALUE is the domain of values which can be assigned to variables in
the souree program. DENOTABLE-VALUE is the domain of values which can be
manipulated by the evaluation process. The domains PROCEDURE and CLASS
describe declarations for procedures an classes respectively. The domain LOCAT/ON
is used to model the notion 'address of a cell capable of containing a (single) value'.
STATE is the domain that consists of functions which map locations onto actual
values or 'unused'. ENVIRONMENT is the domain of functions which map names
onto denotable values.

STRING, INTEGER and UNDEFINED are the domains modeling the values
and operations for the built-in types 'string', 'integer' and 'undefined' respectively.
UNDEFINED is the domain consisting of undefined values. All variables are initial­
ized to an undefined value. Operations are defined on elements in STRING,
INTEGER and UNDEFINED that model the primitive operations on the data types
'string', 'integer' and 'undefined'.

PROCEDURE is the domaio of procedures. Each element of this domain
describes a procedure declaration and contains a literal copy of the text of the pro­
cedure declaration itself and an environment that reftects all names and values avail­
able at the point of declaration.

CLASS is the domain of classes. Each element of this domain describes one
class declaration and contains the name of the class and a literal copy of the text of
the class declaration. COMPOSITE -INSTANCE is the domain of class instances.
All values that are created by a SUMMER program are instauces of some class (this has
been explained informally inSection 4.4.). A composite instanee consistsof the name
of the class to which it belongs, the literal text of the declaration of that class and an
environment that has to be used to inspeet or update components from the instance.
Operations are defined on elementsin PROCEDURE, CLASS and INSTANCE to
manipulate the components of an element in these domains. For completeness, these
domains are mentioned here, but they will not be used in the remaiDder of this
chapter. A complete definition appears in Section 8.3.3.

ENVIRONMENT is the domain of environments. Environments take care of
the binding between names and values and the introduetion of new scopes (i.e. ranges
in the program where narnes may be declared). In general, operations defined on
environments modify the environment to which they are applied.

The definitions given in following sections are centered around operations on
elements of these semantic domains, but we will see relatively few of them in the
examples. Operations will be explained only when they occur in an example.

5.2.4. Evaluation process

Before turning our attention to the evaluation process (which defines seman~
tics), a few words must be said about the definition of syntax. In the definition
method to be used the role of a syntax definitîon is twofold:

o to define the grammar of the defined language, and

68 FORMAL LANGÜAGE DEFINITIONS

o to unravel a souree text in order to del;ine a meaning for its constituent parts.

These two aspects of a syntax defini.tion are now considered in turn.

An extended form of BNF notation is used to describe the syntax of the defined
language. The extensions aim at providing .a concise notation for the description of
repeated and optional syntactic notions. A syntactic notion suflixed with '+' means
one or more repetitions of. that notion. A notion suflixed with '•' stands for zero or
more repetitions of that notion. The notation

{ notion separator } replicator

i.e. a notion foliowed by a separator enclosed in braces foliowed by a replicator, is
used to describe a list of notions separated by the given separator. A replicator is
either '+' or '•'. The replicator '+' indicates that the list consists of one or more
notions. The list begins and ends with a notion. The replicator '•' indicates that the
list consists of zero or more notions.

An optional syntactic notion is indicated by enclosing it in square brackets, e.g.
'[notion]'. The terminal symbols of the grammar are either enclosed in single quotes
(for example: ',' or ':-') or written in upper case letters if the terminal symbol con­
sists solely of letters (both 'IF' and "if" may, for instance, be used to denote the termi­
nal symbol 'if'). Where necessary, parentheses are used for grouping.

Some parts of a syntax rule may belabelled with a <tag>; their meaning will
beoome clear below.

The evaluation process is described in SUMMER extended with parse expres­
sions2 of the form

' {{' <identifier> '====' <syntax-rule> '}}'

which provide a concise notation for parsing and extracting information from the text
of the souree program. A parse expression succeeds if the identifier on the left hand
side of the ' =•' sign has a string as value and if this string is of the form described
by the <syntax-rule> on the right hand side of the '====' sign. All <tag>s occurring
in the <syntax-rule> should have been declared as variables in the program contain­
ing the parse expression, in this case the evaluation process. Substrings of the parsed
text recognized by the syntactic categones that are labelled with a <tag> are assigned
to the variabie that corresponds to that <tag>. Consider, for example, the foliowing
program fragment:

if {{ e •= WHILE t:<test> DO b:<bbdy> OD}}

tb en
put('While expression recognized')

fi

The parse expression will sneeeed if e bas the form of a 'while expression'. The liter al
text of the <test> is then assigned to variabie t and the text of the <body> is
assigned to variabie b.

2) There is no flmcllmental reasoo for introducing thls language extension. However, tbe disadvantage of intro­
ducing sucb an ad hoc extension is more tban compensated by tbe fact tbat we use a notation which is
sufficiently similar to BNF notation to be almast self-explanatory. The elfeet of introducing a language exten­
sion as proposed hereis interesting in its own right but falls outside tbe scope of the current discussion.

5.2.4. Evaluation process 69

If the recognized part of the text is a list or repetition, then an array of string
values is assigned to the variable. In the case of a list of notions separated by separa­
tors, the latter are omitted and only the notions occurring in the list are assigned to
(consecutive) elements in the array. This is exemplified by:

if {{ e =VAR /ist:(<identifier> ','}+ }}
then

fi

put('A variabie declaration containing:');
for id in list do put(id) od

The parse expression succeeds if e bas the form of a 'variable declaration' (i.e. the
keyword 'var' foliowed by a list of <identifier>s separated by commas) and in that
case an array of string values corresponding to the <identifi.er>s occurring in the
declaration is assigned to the variabie list, which is subsequently printed.

Parse expressions may be used in if-expressions or may stand on their own. In
the latter case, the string to be parsed bas to be of the form described by the parse
expression. In this way, parse expressions can be used to decompose a string with a
known form into substrings.

This concludes our digression on the definition of syntax and we turn now our
attention to the evaluation process that defines semantics. In the case of the SUMMER

definition, the overall structure of this evaluation process is:

var ENV;
var STATE;
var varinit;
proc ERROR

.... '
proc eval(e)
(var value, signa/, . . . ;
if ({ e ... <program-declaration> } }
then

return([value, signa/])
fi•
' if { { e •• <variable-declaration> } }

then

);

return([value, signa/])
fi·
'

if {{ e == <empty> }}
then

return([value, signa/])
fi;

The variabie ENV has as value the current environment, and STATE bas as value the
current state. The variabie varinit bas as . value a string consisting of the text of all ·
<variable-initialization>s in the current <block>.

70 PORMAL LANGUAGE DEFINITIONS

The procedure ERROR is called when a semantic error is detected during
evaluation. In this case, the whole evaluation process is aborted immediately. Thct
main defining procedure is eva/, which selects an appropriate case depending onto the
syntactic form of its argument e. Some examples of these various cases wiil be given
in Section 5.2.5. Note that each of these cases involves a complete syntactic analysis
of the string e. The evaluation process is initialed by creating an initial, empty
environment ENV and by calling eva/ with · the text of the souree program as argu­
ment. lf the evaluation process is not prematurely terminaled (by the detection of a
semantic error) the result of the evaluation of the souree program can be obtained by
inspecting the resulting environment ENV.

The definition of SUMMER bas been profoundly inftueneed by the success­
directed evaluation scbeme in the language: an expression can either faH or succeed.
The meaning of faiture is that evaluation of the 'current' expression is abandoned and
that evaluation is continued at a point where a 'handler' (i.e. <if-expression>,
<while-expression>) occurs to deal with the failing case. A similar situation exists for
<retum-expression>s, whicb terminate the evaluation of (possibly nested) expressions.
Both language featurescan thus·essentially inftuenee the flow-of-control in a program.

How are these properties of SUMM~ reftecled in the definition? The procedure
eva/ delivers as result an array of the form [value, signa/], where value is the actual
result of the procedure and signa/ is a success/failure flag that indicates how value
should be interpreted. The signal is used to describe the occurrence of faiture and/ or
<return-expression>s and may have the following values:

N: evaluation terminaled normally.

F: evaluation failed.

NR: normal return; a <return-expr~sion> was encountered during evaluation.

FR: failure return; a failnre return was encountered during evaluation.

The signal is tesled alter each (recursive) invocation of eval. In most cases eva/ per­
forms an immediate return if the signal is not equal to N after the evaluation of a
subexpression. Exceptions to this rule are of two kinds:

o The semantics of certain constructs is such that the flow of control is intention­
ally influenced by the success or faiture of expressions (e.g. <test>s in <if­
expression>s). In eva/ this corresponds to appropriate reactions to N and F
signals. Aborting the evaluation of the 'current' expression, which is necessary
if failure occurs in a deeply nested subexpression, can be achieved by passing
an F signal upwards until it reaches an incamation of eva/ that can take
appropriate measures.

o The semantics of the <return-expression> is such that the execution of the pro­
cedure in which it occurs is terminated and that execution is to be continued at
the plaee of invocation. This is reftected by the signal values FR and NR, that
are only generated by <return-expression>s and are only handled by the
semantic rules associated with procedure calls. The latter rulesturn NR into N
and FR into F before the evaluation proeess is resumed at the point where it
left off to pedorm tbe (by then completed) procedure call. All other semantic
rules return immediately when an NR or FR signal occurs.

5.2.4. Evaluation process 71

5.2.5. Some examples

5.2.5.1. If expressions

An <if-expression> corresponds to the if-then-e1se statement found in most
programming 1anguages. If eva1uation of the <test> immediately contained in the
<if-expression> terminates successfully, the <block> following then is evaluated. If a
<return-expression> was encountered during evaluation of the <test>, then the
evaluation of th~ <if-expression> as a whole is terminated. Otherwise, the <test>s
following subsequent elifs are evaluated until

o one such evaluation terminates successfully (the <block> in the following
tben-part is then evaluated), or

o a <return-expression> is encountered during evaluation of the <test> (the
evaluation of the <if-expression> as a whole is then terminated), or

o the list of <test>s is exhausted.

In the last case, the <if-expression> may contain an else-part and if so the <block>
following else is evaluated. The formal definition is:

1 if {{ e == IF t:<test> THEN b:<block>
2 elifPart: (ELIF <test> THEN <block>)*
3 e/separt: [ELSE < block>] FI } }
4 tben
5 var v, sig;
6 [v, sig] : = eval(t);
7 if sig = N
8 tben
9 return(eva/(b))

10 elif sig = FR I sig = NR
11 then
12 return([v, sig])
13 else
14 var oneelif,
15 for oneelifin elifPart
16 do {{ oneelif== ELIF t:<test> THEN b:<block> }} ;
17 [v, sig] : = eval(t);
18 if sig = N
19 tben
20 return(eval(b))
21 elif sig = FR I sig = NR
22 tben
23 return([v, sig])
24 fi
25 od;
26 if{{ elsepart == ELSEb:<block>}}
27 tben
28 return(eval(b))

72 FORMAL LANGUAGE DEFINITIONS

29 else
30 retum([a_undefined, N))
31 ti
32 fi
33 fi;

The parse expression in lines 1-3 decomposes the string value of e into several parts.
In line 6 the <test> of the <if-expression> is evaluated. If this evaluation produces
the signal N, the <block> following tben is evaluated. The occurrence of the signals
NR or FR (denoting the occurrence of a <return-expression>) terminates the evalua­
tion of the <if-expression> (lines 10, 21). The loop in lines 15-25 iterates over the
successive <test>s and describes thesemantics as explained above. If all <test>s fail,
the (optional) else-part is evaluated in lines 26-31.

For a better understanding of the above definition, it may be useful to note that
parts of the souree program are parsed re"atedly during one evaluation of a given
<if-expression>. For example, the <block> following an elifis parsed both in lines 2
and 16. (This explains, by the way, why the parse expression in line 16 need not be
contained in an if statement, see Section 5.2.4.). In general, the souree text of the
<if-expression> is parsed each time that it is evaluated.

!5.2.5.2. Variabie deelantions

A <variable-declaration> introduces a series of new variables into the current
environment, i.e. narnes of locations whose contents may be inspected and/ or
modified. The declaration may contain <expression>s whose values are to be used
for the initialization of the declared variables. In the formal definition, this is
described by appending all variabie initializations in the current < block> to the vari­
abie varinit and by evaluating the string value of that variabie before the evaluation of
the. subsequent <expression>s in the <block>. The formal definition of <variable­
declaration>s is:

1
2
3
4
5
6
7
8
9

lO
11
12
13
14

if { { e == VAR varlist: { <variable-initialization> ',' } + ';' } }
tben

var name, onevar;
for onevar in varlist
dolf {{ onevar = name:<identifier> ':=' <expression> }}

tben
varinit : = varinit 11 v 11';'

else
{ { onevar == name: <identifier> } }

fi;
ENV.bind(name, STATE.extend(a_undefined))

od;
return([a_undefined, ND

fi;

In line 1, e is decomposed into an array of strings which have the form of a
<variable-initialization>. These string values are considered in succession in the loop
in lines 4-12. If the <variable-initialization> contains an initializing expression, that

5.2.5.2. Variabie declarations 73

expression is appended to varinit (Hne 7) using the string concatenation operator •11'.
Finally, the state STATE is extended with a location containing an undefined value,
and that new location is bound, in the cuerent environment ENV, to the identifier
being declared. Note that, in line 9, vis known to have the form of an <identifier>.,

5.2.5.3. Blocks

A <block> introduces a new scope to be used for the declaratîon of new vari­
ables and constants. lt consists of a (perhaps empty) list of declarations foliowed by
a sequence of expressions separated by sernicolons. A <block> is evaluated as fol­
lows:

o Evaluate all declarations (this can never fait).

o Evaluate all variable-initializations resultîng from the evaluation of the declara­
tions. If this evaluation is not completed successfully, the evaluation of the
<block> is terrninated.

o Evaluate the sequence of expressions in the <block>. SUMMER forbids the
faiture of an expression inside a sequence of expressions. Only the last expres­
sion in a sequence is allowed to fait; this faiture is passed upwards to enclosing
language constructs. If a <return-expression> is encountered during evaluation
of one of the <expressions>s, the evaluation of the <block> is terminated.

The foriiJal definition is:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

if { { e =-• dec/list: <variable-declaration>•
exprlist: {[<expression>] ';'}*}}

tb en

fi•
'

var deel, expr, ENV1, i, varinit1, sig;
ENVl :== ENV;
ENV.new _jnner Jcope;
varinitl : = varinit;
varinit : == " ;
for deel in deellist do [v, sig] : = eval(d) od;
[v, sig] : • eval(varinit);
varinit : = varinit1;
if sig -= N tben ENV := ENV1; return([v, sig]) fi;
for i in exprlist.index
do [v, sig] : == eval(exprlist[i]);

od;

case sig
of N:

F:
NR: FR:

esac

ENV:= ENVl;
return([v, sig])

nothing to do #,

if i exprlist.size I tben ERROR fi,
ENV: == ENVl; return([v, sig])

This definitîon is a simplified version of the one given in part II. In lines 5-8 local
copies are made of E and varinit and new values are assigned to tbem. In lines 9-12

74 FORMAL LANGUAGE DEFINITIONS

the list of <variable-declaration>s in the <block> and the resulting <variable­
initialization>s are evaluated. In lines 13-20 the list of <expression>s in the <block>
is evaluated. Note how faiture of an expression in the middle of the list is treated
(line 11, see above).

5,3. Assessment

The formal language definition presented in the previous section will now be
assessed. lt is tempting to try to get statements like:

or

Users can answer 87% of their questions on language issues within jive minutes if
they have access to a forma/ language definition of the kind described in this chapter.

35% of all run-time errors in user programs are directly related to anoma/ies in the
language definition. ·

In the absence of such results and without methods of obtaining them, we have to live
with qualitative and more or less speculative observations.

A rough indication of the conclseness of the definition can he obtained by oom-
paring various sizes as they apply to the SUMMER definition:

formal definition 20 pages
reference manual 100 pages
implementation 200 pages

These figures show that the implementation is ten times larger than the formal
definition. This is oot surprising, since the implementation has to he efficient while
the formal definition does oot have to be. In this light the 'a-language-is-defined-by­
its-implementation' approach can he rephrased as: 'if a language is defined by its
implementation, tben that implementation had better he small'.

The definition is preclse and complete, in the sense that all semantic operations
associated with a particular language construct have to be specified to allow the con­
struction of an exeeutable version of the definition. The numher of operational
details, i.e. details in the definition which stem from the.chosen definition metbod and
are not a reileetion of details of the defined language, are surprisingly small. This is a
consequence of the choice of the definition language (which should have powerfut
data types and string manipulation operations) and the choice of high-level environ­
ment manipulation primitives which correspond directly to operations in the defined
language and which are not (yet) perverted by implementational details. SUMMER,

extended with parse expressions, seems a quite reasonable vehicle for language
definition. However, it is oot possible to make 'continuation-style' (see [Gordon79])
definitions, since higher-order functions are lacking.

lt is ditticuit to give an objective judgement as to the readabUity of the
definitîon, but we have observed that only a moderate effort (of a few days) is
requîred on the part of a programroer without any training in formal semantics, and
without any previous exposure to the language, to team SUMMER using only the
(annotated) format definition.

The advantages and disadvantages of the formal definition for designer, imple­
mentor and user will now be discussed insome detail.

5.3. Assessment 75

The advantages for tbe designer are:

o Anomalies in tbe design are magnified. lt is a general rule tbat ill-formed enti­
ties can only be described by ill-formed descriptions or by descriptions which
list many exceptional cases. lt is easier to locate such exceptions or anomalies
in a concise formal definition tban in an ambiguons natural language definition
or in a bulky implementation. In tbe SUMMER definition, for example, a very
specific operation on environments is needed ('partial-state-copy') to accommo-.
date. tbe definition of just one language feature ('try-expression'). lt turned out
tbat a slight modification of tbat feature would at tbe same time simplify the
definition and imprave the feature.

o Exhaustive enumeration of language features. A formal definition metbod
forces tbe designer to enumerate all Ianguage features in tbe same framework
and this may help him to find omissions in tbe design.

o lnteractions between language features can be studied. In the SUMMER
definition, for example, tbe designer is forced to decide what happens when a
<return-expression> is evaluated during the evaluation of any otber expression.
There is, however, no guarantee tbat all interactions can be found, since the
formal definition may still contain bidden interactions between language
features. The use Qf auxiliary functions in tbe ·definition is an aid in making
interactions explicit One may even apply techniques such as calling gràph
analysis and data flow analysis to tbe definition to discover clusters of interact­
ing features and to establish eertaio properties of tbe definition.

o An executable formal definition can be tested and used. This may help elim­
inate clerical and gross errors from tbe definition. An executable definition
allows the designer to play with (toy) programs written in the language he is
designing. There is, however, a problem with circular definitions: some imple­
mentation of the defined Ianguage has to exist before the definition itself can be
made executable.

Disadvantages for the designer are:

o A considerable etfort is required to construct a formal definition.

o A general problem is that tbere ar~ no canned, satisfactory definition metbods
available and that the designer bas to begin witb either creating a new metbod
or adapting and extending an existing one.

Advantages for tbe implementor are:

o Unambiguous language definition.

o The implementor may stumble over a eertaio combination of features. Such
cases can be executed both by the implementation and by the definition and tbe
results can be compared.

Disadvantages for the implementor are:

o The implementor must be familiar with the definition metbod or beoome
acquainted with it This is only a minor etfort if one compares it with the total
etfort required to imptement the language.

76 PORMAL LANGUAGE DEFINlTIONS

o lt is non-trivial to derive an implementation strategy from tbe language
definition. This is a problem shared by all 'abstract' language definitions, in
which no attempt is made to use primitives in the definition witb a direct coun­
terpart in an implementation. This leads to tbe conclusion tbat such abstract
definitions should be accompanied by an 'annotation for implementors', which
states where well-known imp1ementation techniques can be used and where cer­
tain optimizations are possible.

Advantages for tbe user are:

o Unambiguous and concise language definition.

o The user is used to reading programs and the format definition can be read as
such. In tbe case of a circular definition, tbe formal definition may be con­
sidered as a very informative example program.

Disadvantages for tbe user are:

o The user must be exposed to the definition method.

o A formal definition is harder to read than a 'naturallanguage' definition.

o In tbe case of the SUMMER definition, the circularity may be confusing for tbe
naive user.

In retrospect, it seems justified to conetude tbat tbe metbod presented in this
chapter is a first step in satisfying the requirements given in Section 5.1. However,
many probieros remaio to be investigated. Does tbe metbod given lend itself to
matbematical analysis? How can tbe 'complexity' of a language be derived from its
definition? Is it possible to 'optimize' tbe executable version of definitions? Attempts
in this direction can be found in [Jones80]: What is tbe relationship between this
definition metbod and extensible languages? Answers to these questions will provide
more insight into tbe structure of programming 1anguages and the metbods of
defining tbem.

5.4. Relerences for Chapter 5

[Gordon79] Gordon, M.J.C., The Denotational Description of Programming
Languages, Springer-Verlag, 1979.

[Jones80] Jones, N.D., Semantics-directed Compiler Generation, Springer­
Verlag, 1980.

[Klint8la] "Forma11anguage definitions can be made practical", in: De Bakker,
J.W. & Van Vliet, J.C. (editors), Algorithmic Languages, IFIP,
North-Holland, 1981, 115-132.

[Landin64] Landin, P.J., "The mechanical evaluation of expressions", Computer
Journal, 6 (1964), 308-320.

[Marcotty76] Marcotty, M., Ledgard, H.F. & Bochmann, G.V., "A sampler of for­
mal definitions", Computing Surveys, 8 (1976) 191-276.

[Reynolds72] Reynolds, J.C., "Definitional interpreters for higher-order
1anguages", Proceedings ACM Annual Conference, 1972, 717-740.

[Wegner72] Wegner, P., "The Vienna Definition Language", Computing Surveys,
4 (1972), 5-63.

77

6. IMPLEMENTA110N

6.1. Introduetion

The împlementation of a high level programming language still requires a
major effort. Depending on the complexity of the language to be implemented and
on the requirements imposed on the final product, one is faced with a task that may
take from a few man months to several man years of Iabour. If the primary purpose
of a research project is language design, one generally does not want to spend too
much time on language implementation and consequently some balance has to be
found between the speed with which programs in the new language are executed and
the effort needed to achleve this.

The împlementation of SUMMER which is described in this chapter evolved over
several years and required approximately two man years of effort. This implementa­
tion allows the execution of SUMMER programs of any size and gives appropriate mes­
sages for syntactic and semantic errors. Apart from providing a few simple tools (for
symbolic tracing and the gatbering of run-time statistics) no effort was made to assist
the user in creating, modifying or maintaining SUMMER programs.

In order to minimize implementation time without sacrificing execution time
efficiency completely, we proceeded as follows:

o SUMMER programs are translated to abstract machine programs. The latter are
subsequently executed by an interpreter.

o Existing algorithms and techniques were used whenever possible.

o A high level împlementation language was used. Assembly language was
resorted to only when absolutely necessary.

o Simple but less efficient algorithms were preterred to complex but efficient ones.

o Facilities for measurements and internal consistency checking were made an
integral part of the system.

o The implementation was made as fiexible as possible so as to allow for easy
· experimentation with new language features and new implementation tech­
niques.

o Communication with the user is performed in terros of entities that are known
to the user at the souree program level.

The overall organization of the SUMMER system is sketched in Figure 6.1. A
compiler (written in SUMMER) transfarms the text of a SUMMER program into an
equivalent abstract machine program. This abstract machine program is then com­
bined with a library of run-time routines (written in C [Kernighan78]) to form a final
executable version of the original SUMMER program. The run-time library contains,
amongst other things, an interpreter for abstract machine instructions.

Several aspects of the SUMMER implementation have been described elsewhere
and wilt not be discussed any further:

o The merlts of a system organization as outlined above and the tradeoffs
between compilation and interpretation have been described in [Klint8lb].

78 IMPLEMENTATION

Program Program

(SUMMBR) (SAM)

Run-time library routine 1
~

Executable

with C routines (C) version of

including: SUMMER

•
- SAM interpreter • program •

garbage collector

- routines for all routine N
r+

built-in operations (C)

Figure 6.1. Overall organization of the SUMMER system.

o Various forms of abstract machine instructions (i.e stack-oriented vs. two- and
three-address instructions) were compáred in [Klint79a].

o A technique for maintaining run-time line numbers has been published in
[Klint79b]. .

This chapter aims at giving a general impression of the SUMMER implementa­
tion. First of all. the SUMMER Abstract Machine (SAM) is described. Next, we show
how the compiler generates code for it. Both descriptions are intentionally brief. We
have used as many conventional techniques • as possible and the reader is assumed to
be familiar with implementation techniques for high level languages. We shall only
highlight new or interesting techniques or algorithms. Readers interested in more
details are referred to the amply annotated listings and (internal) documentation of
the SUMMBR system itself.

6.1. 'lhe SUMMER Abstrad Machine

The SUMMBR Abstract Machine (SAM) provides a largely conventional. stack­
oriented, intermediate level architecture tailored to the execution of SUMMBR pro­
grams. The instruction set is summarized in Table 6.1. The machine has four special
purpose registers. The stack. pointer (SP) points to the top of the expression evalua-

. tion stack. It is used implicitly by many instructions. We shall use the notation
SP[n), with n ;;;;.o, to denote elements on the stack; SP (0] denotes the top element,

6.2. The SUMMER Abstract Machirie 79

SP[l] denotes the element below the top element, and so on. The current faillabel
(see Section 6.2.1) points to the top of the stack of fail labels used to imptement
failure handling and flow of control The eurrent cache (see Section 6.2.2) points to
the top of the stack of recovery caches used to imptement the try-expression in SUM­
MER. The current subject points to the top of the stack of subject strings used to
imptement the scan-expression in SUMMER.

All values in a SUMMER program are represented in SAM by mvalues, which
have a uniform layout and occupy one or more consecutive memory cells. The first
cell of cach mvalue contains a tag that identüies the class to which it belongs. Fol­
lowing cells may contain pointers to other mvalues. A number of classes (integer,
string, real, array, table) are primitive in SAM, i.e. they are directly supported by SAM.
For operations on other classes, calls tobuilt-in routines are generated. Variables in a
SUMMER program ·are represented in SAM by a pointer to an mvalue. This level of
indirection enables SUMMER variables to possess values of varying size and type.

A SAM program consists of three parts as shown in Figure 6.2. The first part
contains class and field declarations descrihing the structure and access rights of the
class declarations in the SUMMER program. The second part consists of declarations
for global variables and procedures. The third part consists of declarations for the /
string constants occurring in the generated code. Some examples of SUMMER expres­
sions and their translation into SAM instructions are shown in Figure 6.3.

Three groups of instructions (for failure handling, side-effect recovery and
operations on classes) are interesting and deserve a more detailed description. This is
the topic of the following three paragraphs.

INT
REAL
GLOB
ASOLOB
LOC
AS LOC
LOAD
NULLSTR
UNDEF
VOID

EQ

SAM INSTRUCTION SUMMARY

Push simpte values onto the expression evaluation stack

n
r
n
n
n
n
1

Push integer constant n .
Push real constant r .
Push value of n -th global variable.
Assign SP [0] to n -th global variable.
Push value of n -th local variable.
Assign SP[O] to n-th local variable.
Push the address of a constant at location I.
Push the empty string.
Push the value undejined.
Decrement SP.

Relational and arithmetical instructions

Test whether SP[l] = SP[O].
On failure: jump to current faillabel.
On success: reptace SP(O] and SP[l] by SP[O],
i.e. SP[l] := SP[O]; SP :=SP I.
The following relational operators behave similarly. -

80

NE
LT
GT
LE
GE
ADD

SUB
MUL
DIV
IDIV
NEG

- CONC

ARINIT n,m

TABINIT n

TABELEM n
IND

ASIND

CALL n,m

RETURN

FRETURN

IMPLEMENTATION

Test whether SP[l] =I= SP[O].
Test wbether SP[l] < SP[O].
Test whether SP(l] > SP[O].
Test whether SP[l].;;; SP[O].
Test whether SP[l] ;;;;;,: SP[O].
Perform SP[l] + SP[Q].
SP[O] and SP[l] are replaced by their sum,
i.e. SP[l] := SP[O] + SP[l]; SP :=SP - 1.
Perform SP [1] - SP [0].
Perform SP[l] * SP[O].
Perform SP [1] ! SP [0].
Perform SP[l]% SP[O] (integer division).
Perform - SP[O] (unary minus).
Perform SP[l] 11 SP[O] (string concatenation).

Instructions related to arrays and tables

Array initialization.
Create an array of length n and initialize the first m
(m <n) elements using the m values on top of the stack.
Push the address of the resulting array onto the stack.
Table initialization.
Create a table of length n and push the result
onto the stack. Initialization of table entties
is done by the instruction TABELEM below.
Table element assignment.
Index operation in array or table.
SP [0] is the array or table instance. ·
SP[l] is the value of the index.
Both entties are replaced by the value of
the indexed element.
Assign to array or table element.
SP [0] is the array or table element.
SP[l] is the value of the index.
SP [2] is the value to be assigned to the indexed element.
Only the latter remains on the staclc.
Replace the array value in SP [0] by its first n elements.

Procedure ca1ls

Call the n -th procedure with m actual parameters.
The actual parameters are on top of the stack.
Return a value from a procedure call and deallocate
stack space for actuals and locals.
Failure return from procedure call. Deallocate stack
space for actuals and locals and simulate a GOFL
instruction in the caller. -

NEWFL
OLDFL
GOFL

00
GO CASE

6.2. The SUMMER Abstract Machine

Failure handling (see Section 6.2.1) and flow of control

Define new faillabel/.
Restore previous faillabel.
Jump to current faillabel.

Jump to label I.
Case table jump.
SP {1] is tbe case table to be used.
1t contains (index-value, program-label) pairs.
SP [0] is tbe index value for tbe table selection.

Recovery caches (see Section 6.2.2)

Install new recovery cache.

81

NEWRC
OLDRC
RESRC

Discard current cache and reinstall previous one (if any).
Restore from current cache.

Instructions for manipulating tbe current subject string

NEWSUBJ
OLDSUBJ
SUBJECT

Install SP[O] as new current subject.
Restore previous subject.
Push value of current subject.

Instructions related to classes (see Section 6.2.3)

NEWCLASS name
CLOC n
ASCLOC n
FLD n ,name
ASFLD n ,name
IFLD n ,name
IASFLD n ,name
SELF

Create new instanee of class name.
Push n -tb local of class instanee.
Assign to n -tb local of class instanee.
Fetch field name from class instanee SP[n].
Assign to field name from class instanee SP[n].
Fetch from field ignoring associations.
Store in field ignoring associations.
Push current class instanee.

Declarative instructions

Deelare label/. LAB
DCLGLOB
DCLSTR

name Deelare global variabie name .

PROC

name,n,b 1 , ••• , bn
Deelare string constant name consisting of
n characters b 1 , • • • , bn .

p ,lnames ,n f ,nl ,bline ,eline
Start declaration of procedure witb name p .
lnames the names of tbe local variables in p .
nf number of format parameters of p.
nl number of local variables of p .
bline line number of first line of p's

declaration in souree text. -

82 IMPLEMENTA Tl ON

eline line number of last line of p's
declaration in souree text.

PROGRAM p ,lnames ,nf ,nl ,bline ,eline

p
PROCEND
SUBR
CLASSES
ENDCLASSES
FJELDS
ENDFJELDS

HALT
NOOP
LINE
ALINE
~RROR

n
n
name

Start declaration of main program.
End of procedure declaration.
SUMMER program uses library routine p.
Start class description tables.

End class description tables.
Start field description tables.
End field description tables.

Miscellaneous instructions

Halt instruction.
No operation.
Static line number increment.
Absolute line number.
Generate error message with fixed name.
Allowed names are:
ERJ:ase: index does riot occur in case table.
ER_assert: assertion failed.
ER_ret: procedure does oot return a value.

Table 6.1. SAM instruction summary.

CLASSES

ENDCLASSES

FJELDS

ENDFJELDS

DCLGLOB vl

PROC pi,... I
PROCEND

DCLSTR si, ... }

Part I : description of user-defined classes

Part 2: declarations of variables and procedures

Part 3: declarations for string constants

Flgure 6.1. General form of SAM program.

6.2.1. Faiture handling 83

SUMMER expression SAM instructions

(Assume that a and bare local variables numbered 0, 1.)

a:=b+2.5 LOC I
REAL 2.5
ADD
ASLOC 0

a[IO]: = x* 2 GLOB x
INT 2
MUL
LOC 0
INT 10
ASIND

q(a, 13) LOC 0
INT 13
CALL q,2

Figure 6.3. SAM instrucdons generated for some SUMMER expressions.

6.2.1. Failure lumdliDg

Each operation in a SUMMER program may fail; correspondingly eacb SAM

instruction may fait. If faiture occurs, the execution of the SAM program is continued
at a point determined by the structure of the SUMMER program; all intermediate
results that were placed on the expression stack by the sequence of instructions con­
taining the failing instruction must tben be removed. We use 'sequence' bere in the
sense of a series of instructions with the same failure continuation label. Ther~ are
three options when designing an instruction set that has to accommodate this kind of
failure handling:

I) Include in each instruction both a failure continuation label and the value of
the stack pointer at the entry of the current instruction sequence.

2) Introduce a dedicated (abstract machine) register for maintaining the current
failure label and the value of the stack pointer at the entry of the current
instruction sequence.

3) Add an instruction for encoding the tree-stroeture of (nested) failure labels to
the abstract machine. Since this tree-stroeture is known at compile time, a fair
amount of computation can be saved in this way which is otherwise spent in
maintaining the nesting of failure labels dynamically.

The fust alternative is easy to implement., but leads to a substantial increase in the
size of the generated code. The third alternative is the most efficient one, but compli­
cates both compiler ,and abstract machine: Às a compromise, the second alternative
was adopted in SAM. Account is taken of tbe nesting of failure labels by a stack of

84 IMPLEMENTA TION

(continuation label, stack-top-at-sequence-entry) pairs. The eurreot faD label register
points to the pair on top of the faD label stack. The instructions for manipulating the
faitlabel stack cao now be defined precisely:

NEWFL/
Pushes the pair (/, SP) onto the faitlabel stack.

OLDFL
Removes the top of the fait label staclc. This instruction is used at the end of

· instruction sequences. lf the OLDFL instruction is reached, the execution of
the sequence as a whole succeeds and the previous fait label is restored.

GOFL
Go to the current fait label, i.e. pop the pair (/, SP') otf the fail label staclc,
adjust the expression stack by assigning SP' to the stack pointer SP and jump
to continuation label /.

Fait labels are only pusbed onto the faitlabel stack by NEWFL instructions. They
are (implicitly) popped by:

o OLDFL (at the successtut completion of the evaluation of an expression).

o GOFL (used for imptementing the SUMMER operators'&' and T. and for impte­
menting try-expressions).

o FRETURN

o Failing expressions (the faitlabel stack is, for instance, popped if the instruction
EQ fails).

Figure 6.4 shows how these instructions are used to implement ' if- and while­
expressions.

6.2.1. Side-effeet reoovery
Side-etfect recovery, as required by the try-expression in SUMMER, is realized in

SAM by means of recovery caches. Since try-expressions may occur in a nested
fashion, it is necessary to maintain a stack of active caches. Each cache is imple­
mented as a linear list of (address, mvalue) pairs. All operations that modify (parts
of) an mvalue must first consult the current cache (if any) to check whether the
address of the memory location to be modilied already occurs in the cache. If it does
not, the address and old contents of the location are added to the cache.

There are three instructions for manipulating recovery caches:

NEWRC
Creates a new cache.

OLDRC
'Discards' { 4.3} the current cache and reinstalis the previous one (if any).

RESRC
Restores from cache. Uses the information in the cache stack to restore the
program to a previous state.

Figure 6.5 shows how these instructions are used to implcment try-expressions.
Despite the simplicity of this scheme and the (inefficient) linear search that is used to
search the cache, no appreciable overhead due to the use of try-expressions bas been
observed. ·

SUMMER expression

if
x•b

then

el se
y :-4

ft

while

x>y

do
x :• x- a

od

6.2.3. Operations on. classes

SAM instrucdons

NEWFL FI
OLOB x
LOC 1
EQ
VOID
OLDFL
INT 3
ASOLOB x
VOID
GO LI
LAB FI
INT 4
ASOLOB y
VOID
LAB Ll

LAB L2
NEWFL F2
OLOB x
GLOB y
OT
VOID
OLDFL
GLOB x
LOC 0
SUB
ASOLOB x
VOID
GO L2
LAB F2

F'JgUre 6.4. SAM instructions generated for if- and wbile-expression.

6.2.3. Operations on classes

The life of a class instanee can be subdivided into three distinct phases:

1) Creation of the new instanee. This is performed by executing the instrucdon

NEWCLASS cname

85

which allocates spaee for a new instanee of class cname and leaves a pointer to
it on top of the expression stack. Such an instanee-pointer is used explicitly or
implicitly by all instrucdons related to classes (see below).

86 IMPLEMENTATION

SUMMER expression SAM instructions

try NEWRC
NEWFL Fl

p() CALL p,O
VOID
GO Ll
LAB Fl
RESRC
NEWFL F2

q() CALL q,O
VOID
GO Ll
LAB F2
RESRC
GOFL

until LAB Ll
r() CALL r,O

VOID
OLDFL

yrt OLDRC

Figure 6.5. SAM instrucdons generated for a try-expression.

2) Access to the instance. Instructions for field selection (FLD, ASFLD) expect
an instanee-pointer as one of their arguments. These instructions contain an
encoded symbolic field name which is looked up in the field declaration tables
(in Part I of the SAM program. see Figure 6.2) in order to validate the field
selection and to select the procedure to be invoked for the actual access. An
instanee-pointer is kept in a (dedicated) local variabie location, when executing
instructions inside a class declaration. In this way, eertaio instructions (CLOC,
ASCLOC) can access and modify fields of the instance.

3) Death of the instance. The lifetime of an instanee is completely determined by
' its accessibility. When a request to create a new instanee cannot be satisfied
because memory space is exhausted, a garbage collector removes all inaccessible
instauces and compacts the memory made free. The garbage collector is based
on techniques described in [Hanson77].

6.3. CompHer

The tasks of the SUMMER compiler are threefold:

1) Check that the input program satisfies the rules of the context-free syntax.

2) Enforce context-sensitive syntax rules (this includes the requirement that vari­
ables should be declared, the checking óf scope rules, etc.)

6.3. Compiler 87

3) Generale SAM instructions for the input program.

Steps 1 and 2 are performed by the parser and step 3 is performed by the code gen­
erator. The organization of the compiler is shown in Figure 6.6.

intermediate files with
parse trees and symbol tables

SUMMER

program

error messages

Figure 6.6. Organization of the SUMMER compiler.

The parser uses recursive descent for the syntactic analysis of statements and
declarations and a bottorn-up parsing metbod for analyzing expressions. Both parsing
methods use an error recovery scheme that was first used in a PASCAL compiler [Hart­
mann77, Amman78]. This scheme works extremely well for SUMMER since all
language constrocts have a 'closed' form and distinct closing delimiters. It was
decided to use a table-driven, bottorn-up expression parser to simplify the recognition
of user-defined operators.

The parser produces a series of intermediale files which contain a parse tree of
the SUMMER program and symbol tables. These intermediate files serve as input for
the code generator.

The code generator rearranges the information in the intermediate fileS and per­
forms a pre-order traversal of the parse tree to generate SAM instructions.

Forther details conceming the organization of the SUMMER compiler cao be
found in [Sint80].

6.4. Referem:es for Chapter 6

(Ammann78] Ammann, U., "Error recovery in recursive descent parsers", in:

[Hanson77]

Amirchachy, M. & Neél, D., (editors), Le Point sur la Compilation,
Institut de Recherche d'Informatique et d' Automatique, Le Chesnay,
France, 1978.

Hanson, D.R., "Storage Management for an Implementation of SNO·

BOL4", Software Practice and Experience, 7 (1977), 179-192.

88 IMPLEMENTATION

[Hartmann77] Hartmann, A.C., A Concurrent Pascal Compiler for Minicomputers,
Springer-Verlag, Berlin, 1977.

[Kernighan78] Kernighan, B.R. & Ritchie, D.M., The C Programming Language,
Prentice-Hall, 1978.

[Klint79a] Klint, P., "How inefficient are stack-oriented abstract machines?",
Mathematica! Centre Report lW 123179.

(Klint79b] Klint, P., "Line Numbers Made Cheap", Communications of the
ACM, 10 (1979) 22, 557-559.

[Klint81b] Klint, P., "lnterpretation Techniques", Software Practice and Experi­
ence, ll (1981), 963-973.

[Sint80] Sint, H.J., "Organization of the SUMMER compiler", Internat
Memorandum, Mathematica! Centre, 1980.

89 I

7. EPILOGUE

7.1. Looking backward

We have come a long way since we began consirlering string processing in
Chapter 1. A first atternpt at designinga new string processing language (SPRING, see
Chapter 2) resulted in a poor language but gave considerable insight into the prob­
lems involved. In Chapter 3, formal techniques were used to analyze the pattem
matching metbod of SNOBOL4. Special attention was paid to the confusion that can
arise from side-elfects due to failing atternpts during a pattem match. As a result of
this analysis, a new model for side-elfect recovery was designed and formally
descri bed.

This model, together with new insights of how string processing should be
incorporated into a programming language, led to the design of the language SUMMER

(Chapter 4). In order to define the semantics of SUMMER formally, an improved
metbod for operationallanguage definitions was developed in Chapter 5.

Finally, the language was implemenled and a general outline of this implemen­
talion was given in Chapter 6.

In the current chapter we evaluate the results of this research and indicate some
directions for further investigation.

7.1.1. SUMMER as a language

Language design and oompromise are alrnost synonymous. A language
designer bas to reconcile simplicity, expressive power, orthogonality, economy of con­
cepts, anticipated application area, tradition, style, taste, implementation considera­
tions. experience, enthusiasm and available time (to mention but a few) with each
other when designing a new language. Comprornises are thus üu;vitable. Evidence of
this kind of oompromise can also be found in SUMMER. Some weak points of SUMMER

are:

o . Certain useful language features (like procedure variables and advanced array
operations) were ornitted in favor of simplicity.

o A very general notion of 'subject' was included in the language. This generality
bas (so far) notbeen fully exploited.

o Try-expressions do not reeover the values of local variables in the 'current' pro­
cedure. This inelegant way of obtaining information from an attempt that
failed was dictaled by implementation considerations. An implementation tech­
nique for a more elegant solution (not reecvering the values of an explicitly
stated list of variables) was not discovered until it was too late.

o The mechanism to control access to class instances (fetch- and store­
associations) is not sufficiently sirnple and elegant. This could not be irnproved
due to Jack of time.

o The string scanning functions in SUMMER are based on the functions for lexical
scanning as found in SNOBOL4. 1t would have been better to design a new set
of higher level prirnitives for string scanning.

90 EPILOGUE

o Some cosroetic changes should be made to the syntax.

0 The system of dynamic types used is adequate. However, a slighdy more res­
trictive type system would make static type checking much easier. In such a
system, variables may still have values of arbitrary type, but as soon as a vari­
abie has received a value of a certain type, only values of that particular type
may be assigned to it.

Some strong points of SUMMER are:

o Expression evaluation and pattem matching have been completely unified,
resulting in a substantial reduction in the number of language primitives.

o lncorporation of faiture handling into the expression evaluation mechanism
leads to a concise notation, since the same expression can either compute a
result or produce a faiture signal.

o The language is based on a consistent view of side-effect recovery, thus elim­
inating the problems with immediate/oonditional side-effects found in SNOBOL4.

lt turned out that the 'recovery cache' could be used effectively to imptement
side-effect recovery.

o The use of 'classes' as a data abstraction mechanism was a good choice.
Amongst other things, this allowed us to cast the notion of 'subject string' and
'string pattem matching' into a more general framework.

Despite the mentioned shortcomings, experience shows that SUMMER is a convenient,
easy to leam, language. The language bas been used for the implementation of
assemblers, compilers, preprocessors, a parser generator, systems for automatic type
inference and data flow analysis, and, surprisingly, also for the implementation of
simulators for various computer architectures such as for the Manchester data flow
machine and for the architecture of the conventional microprogramming level.

7.1.2. The SUMMER implementation

The SUMMER implementation is reliable, gives good error messages, but is slow.
Users tend to complain about long compilatipn times. The compiler is slow because
it is written in SUMMER itself and because its two constituent parts communicate with
each other via symbolie intermediale files. ne compiler loses much time in convert­
ing betWeen internat and external data representations. Long compilation times may
be a serious problem for large programs, since SUMMER lacks separate compilation
facilities.

In most cases, the efficiency ofSUMMER·programs seems to be acceptable. Gen­
erally speaking, one can say that programs which run slowly are those which perform
low level operations and do not use the higher level facilities offered by the language.

7.1.3. Use of a formal definition

The semantics of SUMMER were formally described after the language had been
completely designed. A considerable effort was required to develop a formal descrip­
tion method and to produce a format description of the language. This effort, though
much larger than anticipated, payed off: much insight was gained into the structure of
the language and into errors or omissions in the design. Three lessons can be learned
from this:

7.1.3. Use of a formal definitio~- 91

o Language design and formal definition should proceed hand in hand.

o The language implementation should be derived (in some automatic .way) from
the forma! definition. In that way one can avoid inconsistencies or incompati­
bilities between definition and implementation.

o Several language definition methods first convert the program to be defined to
an intermediale form that is more suitable to operate on. The 'parse expres­
sions' used in the formal definition of SUMMER operate directly on the souree
text of the program to be defined, thus eliminating the extra conversion step
and simplifying the definition.

7.2. Looklog forward

The research described in this thesis can be continued in the direction of both
executable Janguage delinitions and programming environments.

Executable Janguage delinitions are a valuable tooi for the language designer as
was explained in Chapter 5. The metbod used in the SUMMER definition could be
improved in several ways:

o The metbod is not suited to the formulation (or proof) of properties of a given
language definition. This can be cured by eliminating some operational aspècts
from the method.

o The metbod leads to intolerably inefficient implementations. There are two
major sourees of this inefficiency. First of all, statements are parsed every time
they are executed. This can be avoided in several ways: one can either
translate the souree text to an intermediate form or maintain a 'cache' of pieces
of souree text that have already been parsed. Secondly, a very general and
expensive technique is used to implement environment modifications. Special
properties of a language (for example, the property that environments can be
implemented on a stack) are not exploited. It is a non-trivia! task to extract
such optimization information from a given language definition.

A programming environment is an interactive computer system dedicated to the
development and documentation of programs. When SUMMER was being designed the
idea was, that, for the sake of portability, its interface with the host operating system
should be kept as simple as possible. Thinking on a dedicated SUMMER environment .
started only after the design of the language was complete. It quickly tumed out that
the original austere file system interface was inadequate for use in an integrated
environment. More specifically, one would like to exploit the 'class' mechanism not
only locally in programs, but also at the level of external files. Besides leading to an
integration of 'internal' and 'external' data types, this further suggested the use of
SUMMER as a command language. At the same time, we noted a strong similarity
between the language of the symbolic debugger in the SUMMER system and SUMMER

itself.

Although the analogies were strong in both cases, it was also evident that SUM­

MER could not play the role of a unified command/programming/debugging language
without extensive modification. The advantage to be gained was clear: a highly uni­
form programming environment. But the problems involved seemed many and we
therefore decided to concentrate, not on the modification of SUMMER, but, more gen­
erally, on the basic principles underlying monolingual systems, i.e. systems in which

92 EPILOGDE

'the command language, the programming language, and the·Ianguage of the symbolic
debugger are identical. This bas resulted in [Heering8l].

' Having laid the foundations, the next step will be the implementation of a
proof-of-concept monolingual environment. It wi1l contain many features of SUMMER

in generalized form.

7.3. Keferences for Chapter 7

[Heering81) Heering, J. & Klint, P., "Towards monolingual programming
environments", Mathematica} Centre Report lW 185/81.

PART II

SUMMER Reference Manual

!

95

PREFACE FOR PART 11

The second part of this thesis is devoted to the definition of the SUMMER pro­
gramming language. It provides both a forma) and informal language definition and
tutorial examples. ·

In Chapter 8 the techniques and notational conventions that are used in the
definition are introduced. Much attention is paid to the method used for the forma!
definition of semantics. Chapter 9 contains a semi-forma! definition of the SUMMER

kernel. This is a small subset of the language on which the semantic definition of t"e
whole language can be based. The description of each language feature consists bf its
syntax, an informal as well as a forma] definition of its semantics, and examples. In,
Chapter 10 the kernel is extended with useful data types and associated operations,
such as reals, arrays, tables, files, bit strings, etc. Some complete, annotated SUMMER

programs are presenled in Chapter 11. And, finally, a summary of the syntax is given
in Chapter 12.

Readers who are only interested in getting a general impression of the language
may confine themselves to Chapter 4 in Part I and the annotated examples in Chapter
11. Readers who are not interested in the forma) definition of the language may skip
Chapter 8 (except Sections 8.1 and 8.2), and all subsections of Chapter 9 entitled
'Semantics'.

96

1 8. PREUMINARIES TO THE DEFINITION OF SUMMER.

In this chapter we introduce the techniques that wili be used to describe the
syntax and semantics of the SUMMER programming language. Section 8.1 introduces
an extended form of BNF notadon that wilt be used to describe the syntax. Section
8.2 defines the lexical primitives of SUMMER. In section 8.3 the metbod used for the
description of semantics is introduced and, at the same time, the semantic primitives
used in the SUMMER definition are define~. In section 8.4 some peculiarities and
shortcomings of the definition are discussed.

8.1. Syntaetie considerations

Au extended form of BNF notation wili be used to describe the syntax of SUM­

MER. lt aims at providing a concise notadon for the description of repeated and
optional syntactic notions. A syntactic notion suffixed witb '+ ' means one or more
repetitions of that notion. A notion suffi.xed with '•' stands for zero or more repeti­
tions of that notion. The notation

{ notion separator } replicator

i.e. a notion foliowed by a separator enclosed in braces and foliowed by a replicator, is
used to describe lists of notions separated by the given separator. A separator should
be a terminal symbol of the grammar. A replicator is either '+' or '•'. The replica­
tor '+' indicates that the list consists of one or more notions. The list begins and
ends with a notion. The replicator '•' indicates that the list consists of zero or more
notions.

An optional syntactic notion is indicated by enclosing it in square brackets, e.g.
'[notion]'. The terminal symbols of the grammar are represented either by their con­
stituent characters enclosed in single quotes (for example: ',' or ':=') orbyupper case
letters if the terminal symbol consists solely of lower case letters (for example: both
'IF' and "if" may be used to denote the terminal symbol 'if'). Single quote characters
that occur in a terminal symbol are duplicated. Where necessary, parentheses are
used for grouping.

A description of this formalism in its own notation is:

<grarnmar>

<rule>

<rule-body>

<primary>

<option>

<list>

::= <rnle>+.

:: = <rule-name> '::=' <rule-body> '.' .

::= {<primary>• 'I'}+.

:: = (<terminal-symbol> I <rule-name> I
<option> I <list> I <compound>

> l '+'I '•' 1.
:: = I[' <rule-b~y> ']' ,

::= '{' <primary> <terminal-symbol> '}'<'+'I '•').

<compound> :: = '(' <rule-body> ')' .

<upper-case:.Ietter> + I <terminal-symbol> :: =
"" <arbitrary-ascü-charactfifr> + "" .

<mie-name> : : = '< ' (<lower""Cas~-letter> 1 ' - ') + '> '.

8.1. Syntactic considerations 97

The syntactic notions <upper-case-letter>, <lower-case-letter> and <arbitrary­
ascii-cbaracter> are not furtber defined bere, but have an obvious meaning.

In the description of the semantics an extended version of this syntax notation
is used; this is further explained in section 8.3.4.

8.2. Lexical considerations

The ASCII character set is used as the basic character set of the language.

The lexical units of a program are: <delimiter>, <identifier> (including key­
words, see below), <integer-constant>, <real-constant>, <string-constant> and
<operator-symbol>. Lexical units may be separated by zero or more layout symbols:
spaee (SP), horizontal tab (HT), newline (NL) or comment. A comment consistsof a
comment symbol e#'), zero or more arbitrary cbaracters except the comment symbol,
followed by a oomment symbol. At least one layout symbol is required between adja­
cent <identifier>s, <integer-constant>s and <real-constant>s. Except where a layout
symbol occurs inside a <string-constant> or is required as separator, it may be
removed from a program without changing tbe semantics of tbe program.

A <delimiter> is used as separator in listsof language constructs ortoenclose
(lists of) language constructs. The foUowing <delimiter>s are defined:

<delimiter>::=',' I';' 1':' !'('I ')'·l'f' I 'J'.

An <identifier> is used as a name and bas tbe form:

<identifier> :: = <letter> (<letter> I <digit> 1'-')* .

Tbe <identifier>s listed below are keywords and have a special significanee in the
language; tbey can not be redeciared by tbe programmer:

array else monadic subclass
assert end od subject
begin esac of succeeds
case fails op table
class fetch proc then
code fi program try
const for return undefined
default freturn rof until
do if scan var
dyadic in self while
elif init store yrt

An <integer-constant> is used to denote an instanee of the class integer {10.2}and
bas the form:

<integer-constant> :: = [1 + 1
1 '-

1
] <digit> + .

A <real-constant> is used to denote an instanee of the class real {10.3} and bas the
form:

98 PRELIMINARIES TO THE DEFINITION OF SUMMER

<real-constant> :: === <integer-constant> <real-exponent> I
(<integer-constant>] '.' «ligit> + [<real-exponent>] .

<real-exponent> ::• 'e' <integer-constant>.

A <string-constant> is used to denote an instanee of the class string {10.4} and bas
the form:

<string-constant> :: • <single-quote> <string-item>* <single-quote> .

<string-item> :: • <any-character-from-limited-ascü-set> I
'\, ('b' l'n' I 't' I'\') I
'\, <digit> <digit> <digit> 1

<single-quote> <single-quote> .

A <string-constant> consists of zero or more characters from a limited set (i.e. all
ASCII characters except the characters: single quote ("'), backslash (' \ ') and newline
(NL)) enclosed in single quote characters. The single quote character itself can be
obtained by writing two adjacent single quote characters. There are two ways to
associate a printable representation with non-printable characters. The escape
sequenees '\ b', '\ n', '\ t ' and '\ \' are used to denote respectively the characters
backspace (BS), newline (NL), horizontal tab (HT) and backslash (' \ '). Arbitrary
non-printable characters can be denoted by '\abc', where 'abc' is the three-digit octal
representation of the desired character in the ASCII character set.

An <operator-symbol> is used to denote a built-in or user-defined operator {9.1.4}
and must adhere to:

<operator-symbol> :: = ' ' (<letter> I <digit>) + '-' I
('*' I '+' I ' I I '/' I '·' '<'

'='I '>'I 'I' I '&'I '-'1 '!'
'\'I '@' I '?' I '$' I '%'

)+.

The recognition of <operator-symbol>s is described in 9.1.6.

8.3. Se1D81ltic oonsiderations

8.3.1. Description metbod

An evaluation processor Interpreter (With the name 'eval') will be defined that
takes an arbitrary, but syntactically correct, souree text ('the souree program') as
input and either computes the result of the execution of that program (if it is a legal
SUMMER program), or detects a semantic error, or does not terminate. In the latter
two cases no meaning is attached to the program. The evaluation proeess operates
directly on the text of the souree program. :Ouring this process a global environment
is inspected or updated. An environment is a mapping from identifiers in the souree
program to their actual values during the evaluation proeess. In this way environ­
ments determine the meaning of narnes in, the souree program and are used to
describe concepts such as variables, assigmnent and scope rules.

8.3.1. Description metbod 99

A fundamental question arises bere: in which language do we write the
definition'? Several choices can be made, such as the formalism used in denotational
semantici ([Gordon79], which boils down to a mathematical notation for recursive
functions and domains) or the Vienna Definition Language ([Wegner72], which is a
programming language designed for the manipulation of trees). The merlts of these
formalisms will not be discussed bere, but they have one disadvantage in common:
yet another language and yet another notation have to be introduced. Since this
conflicts with our aim of providing a concise, precise and readable definition, it was
decided to describe the semantics of SUMMER in a subset of SUMMER itself. This
choice has the obvious disadvantage that the definition is eircular, i.e. language and
metalanguage coincide. lt will beoome clear later that we make a meticulous distinc­
tion between notionsin the definition language (e.g. '1', an integer as used in the for-.
mal definition) and notions in the defined language (e.g. 'a_integer(1)', an expression
in the definition language that describes the integer 'I' as it may occur in a program
in the defined language}. At first sight, the reader may find parts of the formal
definition needlessly complicated and perhaps even confusing. In many cases, this
apparent complexity is due to our making a carelul distinction between the two
language levels involved in the definition.

The choice of SUMMER as definition language bas the practical advantage that
readers who have only a moderate familiarity with the language will be able to read
the definition without great difficulty. lt should be noted that there is no fundamental
reason for making the definition circular. The definition metbod used here would also
work if, for example, ALGOL68 were used as definition language. In any case, it is
essenrial that the definition language bas powerfut string operations and allows the
creation of data structures of dynamically varying size. This requirement makes, for
example, PASCAL less suited as definition language. Choosing SUMMER as definition
language gives us the opportunity to investigate the suitability of that language in the
area of language definition (see Chapter 5). [Reynolds72] contains an extensive dis­
cussion of circular Ianguage definitions.

A final remark should be made regarding the operational aspects of the
definition method. As explained above, the meaning of each souree program S is
defined by the result of 'executing' the interpreter eva/ with S as input. However, the
parts of S that are not visited during this execution are not checked for their semantic
correctness. Thus there is no guarantee that S is free of semantic errors.

The following sections describe some aspects of the use of SUMMER as a
metalanguage, the semantic domains used by the evaluation. process, and the evalua­
tion process itself.

8.3.2. SuMMER as a metalanguage

This paragraph focuses on some aspects of SUMMER that are used in the formal
definition, but have not yet been covered in Chapter 4. Most of the constrocts to be
used in the definition have some similarity to constructs in, for instance, PASCAL and
are assumed to be self-explanatory. Only less obvious constructs that are essential for
the understanding of the definition are mentioned bere.

SUMMER is an object-oriented language with pointer semantics. This means
that an object can be modified by assignment and that such modifications are visible
through all access paths to that object. For example, ·

100 PRELIMINARIES TO THE DEFINITION OFSUMMER

s : = stack(10);
t := s;

assigns one and the same stack object to the variables s and t, and

s.push(v)

pushes the value of v onto this stack. As a side-etfect, the stack is modified in such a
way that subsequent operations on s and t can perceive the effect of that modification.
In the formal definition this is relevant to the concepts 'state' and 'environment',
which are modified in this way.

The Ianguage is dynamically typed, i.e. the type of variables is not fixed stati­
cally (as in PASCAL and ALOOL60) but is only determined during the execution of the
program (as in LISP and SNOBOL4). Moreover, generic operations on data structures

' are allowed. If an operation is defined on several data types, then the procedure to be
executed when that operation is encountered is determined by the type of the (left)
operand of that operation.

Control structures and data structures are self-explanatory except possibly for
arrays and for-expressions.

Arrays are veetors of values, indexed by 0, ... , N -1, where N is the number
of elements in the array. lf A is an array then the operation A.size will yield the
number of elementsin the array. A new array is created by

Wo, ... , VN-1]

or

array(N, V).

In the former case, an array of size N is created and initialized to the values
V0, ..• , VN-J· In the latter case, an array of size Nis created and all elements are
initialized to the value V. Arrays are also ~tllowed on the left-hand side of assign­
ments. This provides a convenient notation for multiple assignments. For example,

x :• lO;y := 20; z := 30;

is equivalent to

[x, y, z] : • [10, 20, 30]

and, more generally,

xo := a[O]; ... ; Xk := a(k];

is equivalent to

[xo, ... , xk] : a

The general form of a for-expressions is:

for VinGdoSoei

where V is a variable, G an expression capable of generating a sequence of values
VAL; and where S is an arbitrary statement. For each iteration the assignment
V: = VAL1 is performed and S is evaluated. As used in the formal definition, the
value of G is either an array (in which case consecutive array elements are generated)

8.3.2. SUMMER as a metalanguage 101

or G is an array on which the operation index is performed (in which case all indices
of consecutive array elements are generated). For example, in

a : = [144, 13, 7];
for x in a do print(x) od

an array object is assigned to the variabie a and the values 144, 13, 7 will be printed,
while

for i in a.index do print(i) od

will print the values 0, 1, 2. Further examples of for-expressions can be found in the
following paragraphs.

8.3.3. Semantic domains

A semantic domaio is a set, whose elements either describe a primitive notion
in the defined language (like 'variable' or 'procedure declaration') or have some com­
mon properties as far as the evaluation process is concerned. First, the relationship
between these domains is given by a series of domaio equations. Next, we give an
operational definition of each domain by specifying its abstract properties.

The relationship between the domains BASIC -IN STANCE, COMPOSITE­
INSTANCE, INSTANCE, STORABLE-VALUE, DENOTABLE-VALUE, PRO­
CEDURE, CLASS, LOCAT/ON, STATE and ENVIRONMENT is as follows:

BASIC-INSTANCE =INTEGER U STRING U UNDEFINED
COMPOSITE -INSTANCE = CLASS X ENVIRONMENT
INSTANCE = BASIC-INSTANCE U COMPOSITE-INSTANCE
STORABLE-VALUE = INSTANCE
DENOTABLE-VALUE == STORABLE-VALUE U PROCEDURE U

PROCEDURE

CLASS
STATE
ENVIRONMENT

CLASS U LOCAT/ON
= PROCEDURE-DECLARAT/ON X

ENVIRONMENT
= IDENTIFIER X CLASS-DECLARATION
= LOCAT/ON- (STORABLE-VALUE U {unused})
= IDENTIFIER - DENOTABLE-VALUE

Here, IDENTIFIER, PROCEDURE-DECLARAT/ON and CLASS­
DECLARATION are the sets of strings that can be derived from the syntactic
notions <identifier>, <procedure-declaration> and <class-declaration> in the SUM­

MER grammar. All values in SUMMER are an instanee of some class. The domain
INSTANCE describes all those values. BASIC-INSTANCE is the domain of the
primitive values in the language. COMPOSITE-INSTANCE is the domain of user­
defined values. STORABLE-VALUE is the domain of values which can he assigned
to variables in the souree program. DENOTABLE-VALUE is the domain of values
which can be manipulated by the evaluation process. The domains PROCEDURE
and CLASS describe declarations for procedures and classes. The domain LOCA­
TION is used to model the notion 'address of a cell capable of containing a (single)
value'. STATE is the domain of functions which map locations onto actual values or
unused. ENVIRONMENT is the domain of functions which map narnes onto denot­
able values. These semantic domains will now be described in more detaiL

102 PRELIMINARIES TO THE DEFINITION OF SUMMER

The domain BASIC-INSTANCE describes the instances of basic, built-in
classes in the defined language; it can be subdivided into three parts: the subdomaiDs
INTEGER, STRING and UNDEFINED, which are now described in turn.

INTEGER is the domain of the built-in class integer. The following operations
are defined on it:

a..Jnteger(intval), with intval an integer value of the definition language,
creates a new element of INTEGER .

i.intval, with i e INTEGER , gives the value of the integer part of i. Note
that for all integers n the equality a..Jnteger(n).intval = n holds.

is_integer(i), with i e DENOTABLE-VALUE, succeeds if and only if
i e INTEGER. {More precisely, is..Jnteger is a function from
DENOTABLE-VALUE to {succeeds, fails}. Here, sueceeds denotes
successful expression evaluation (as used in SUMMER) and may be inter­
preted as 'true'; faits denotes evaluation of a failing expression and may
be interpreted as 'fa/se'.}

i;has(oper), with i e INTEGER and oper a string, succeeds if oper is an
operation defined for INTEGER values, and is false otherwise.

i.operation (oper, actuals), with i e INTEGER,· oper a string and actuals an
array of STORABLE-V ALUE s, per:forms the operation with the name
oper on INTEGER value i with actuals as actual parameter list, and
delivers a STORABLE-VALUE as result. The list of operations defined
on integers and the semantics of these operations are described in 10.2.

STRING is the domain of the built-in class string. The following operations
are defined on it:

a.....string(stringval), with stringval a string, creates a new element of STRING
consisting of the characters in stringval.

s.stringval, with s e STRING, gives the value of the string part of s. Note
that for all strings t the equality a.....string(t).stringval = t holds.

is.....string(s), with s e DENOTABLE-VALUE, succeeds if and only if
se STRING.

s.has(oper), with s e STRING and oper a string, sueceeds if an operation with
the name equal to the string value of oper is defined for values in
STRING and is false otherwise.

s.operation (oper, actuals), with s e STRING, oper a string and actuals an
array of STORABLE-VALUEs, performs the operation with name oper
on the STRING value s with actuals as list of actual parameters, and
delivers a STORABLE-VALUE as result. The list of operations defined
on strings and the semantics of these operations are described in 10.4.

UNDEFINED is the domain consisting of undefined values. Undefined values
can only be used in a few situations; they may be used in assignments, tests for equal­
ity or inequality, or they may be used as actual parameters. All variables are initial­
ized to an undefined value; in that way undetined values serve to detect errors due to
the use of otherwise uninitialized variables. The following operations are defined on
it:

8.3.3. Semantic domains 103

a_undefined creates a new UNDEFINED value.

is_undefined(u), with u E DENOTABLE-VALUE, succeeds if and only if
u E UNDEFINED.

u.has(aper), with u E UNDEFINED and aper a string, is always false.

u.aperatian(aper, aetuals), with u E UNDEFINED, aper a string and aetuals
an array of STORABLE-VALUE s, always results in a semantic error.

COMPOSITE -INSTANCE is the domain of instauces of user-defined classes.
A composite-instance consists of an element of CLASS (to be defined below) that
describes the class to which the instanee belongs and an environment that has to be
used to inspeet or update components in the instance. The following operations are
defined:

a_eampasite_instanee(e, e), with e E CLASS and e E ENVIRONMENT,
creates a new element i E COMPOSITE -INSTANCE, such that
i.elass _deel = c and i.env = e.

is_eampasite_instanee(i), with i E DENOTABLE -VALUE, succeeds if and
only if i E COMPOSITE -INSTANCE.

i.elass _deel and i.env, with i E COMPOSITE -INSTANCE, give the values of
the class deelaratien and environment part of i.

i.same_as(j), with i, i E COMPOSITE -INSTANCE, succeeds if and only if i
and i are the same element of COMPOSITE -INSTANCE, i.e. they are
the result of the same invocation of a _eomposite _instanee.

INSTANCE is the domain of values that may occur during the evaluation of a
program. lt simply consists of the union of the domains BASIC-INSTANCE and
COMPOSITE -INSTANCE. For convenience, the following operations will be used:

is_instanee(i), with i E DENOTABLE -VALUE, succeeds if and only if
iE INSTANCE.

is_basie_instance(i), with i E DENOTABLE-VALUE, succeeds if and only if
i E INTEGER, or i ESTRINGor i E UNDEFINED.

STORABLE-VALUE is the domain of all values that may be assigned to vari­
ables in a program. lt is identical to the domain INSTANCE; this stresses the fact
that all values that can be created by a program can also be assigned to a variable.

DENOTABLE -VALUE is the domain of values that can be manipulated by
the evaluation process itself. It consists of the union of the domain STORABLE­
VALUE (described above) and the domains PROCEDURE, CLASS and LOCA­
TION, which are now described in turn.

PROCEDURE is the domain of procedures. Each element of this domain
describes' one procedure deelaratien and contains a literal copy of the text of the pro­
cedure deelaratien itself and an environment that reflects all narnes and values avail­
able at the point of declaration. The following operations are defined:

a__prae(praedeel, e), with praedeel E PROCEDURE-DECLARAT/ON and
e E ENVIRONMENT, creates a new elementp E PROCEDURE, such
that p.text = praedeel and p.env = e. '

104 PRELIMINARIES TO THE DEFINITION OF SUMMER

is_proc(p), with p E DENOTABLE-VALUE, succeeds if and only if
p E PROCEDURE.

p.text and p.env give the value of the text and environment part of p.

CLA$S is the domain of classes. Each element of this domain describes one
class declaration and contains the name of the class and a literal copy of the text of
the class declaration. The following operations are defined on it:

a_class(id, classdecl), with id E IDENTIFIER and classdecl E CLASS­
DECLARATION, creates a new element c E CLASS, such that
c.name = id and c.text = c/assdec/. {Note that, strictly speaking, the
class name is already contained in the literal text of its declaration. For
convenience, i.e. to easily describe the type function {9.2.2,10.11.5}, an
additional name component is used.}

is_class(c), with c E DENOTABLE-VALUE, succeeds if and only if
c E CLASS.

c.name and c.text give the value of the,name and declaration text part of c.

{ An aside on the asymmetrie treatment of procedures and classes is appropriate bere.
A <class-declaration> can only appear at the most 'global' level, i.e. immediately
contained in a <summer-program>. A <procedure-declaration>, however, may
appear either at this most globallevd or may be. contained in a <class-declaration>.
This implies that for <procedure-declaration>s the declaring environments must be
distinguished, while for <class-declaration>s always the most global environment
must be used.}

The following operations are defined on LOCAT/ONs and STATEs:

s.extend(v), with s E STATE and v E STORABLE-VALUEs, associates an
unused location 1 with v , i.e. location I, originally associated with the
value unused, is associated with value v (until later modification occurs).
Location I is returned as value.

s.contents(1), with s E STATE and 1 E LOCATION, returns the value
v E STORABLE-VALUE associated with location /. Location I should
not be associated with unused.

s.modify(l,v), with s eSTATE, I eLOCATION and v eSTORABLE­
VALUE, changes the value associated with location I to the value v.
Location I should not be associated with unused. Location I is returned
as value of this operation.

ts__}oc(l), with I E DENOTABLE-VALUE, succeeds if and only if
I E LOCAT/ON.

' Inspeetion of the contents of a location does not affect either its own contents or that
of any other location. Modification of the contents of a location does not affect the
contentsof any other location. Note that the above operations respect the following
rules:

is__}oc(s.extend(v))
s.contents(s.extend(v)) = v
s.contents(s.modify(l, v)) = v

ENVIRONMENT is the domain of environments .. Environments administer

8.3.3. Semantic domains 105

tbe binding between narnes and values and the introduetion of new scopes, i.e. ranges
in the program where new narnes may be declared {9.1}. Unless stated otherwise, the
following operations modify the environment to which they are applied: ·

e.bind(n,v), with e e ENVIRONMENT, n e IDENTIFIER and
v e DENOTABLE-VALUE, binds namen to value v. This operation
results in a semantic error if the name n is redeclared, i.e. a bind opera­
don has already been performed for name n, without intervening
new _jnner _,scope or new _proc _,scope operation.

e.binding(n), with e E ENVIRONMENT and n e IDENTIFIER, gives the
value previously bound to name n . A semantic error occurs if n has no
binding.

e.has_binding(n), with e e ENVIRONMENT and n e IDENTIFIER,
succeeds if and only if name n has been bound to a value.

e.names, with e e ENVIRONMENT, returns an array of strings which
represent all identifiers for which a bind operation has been performed in
the environment e. Note that n e e.names = e.has _binding(n) holds.

e.new_jnner_,scope, with e e ENVIRONMENT, marks the start of a new
inner scope. This operation is used to delimit scopes in order to allow
redeclarations of variables. The reverse operation
('previous _jnner _,scope') is not needed, since environments are always
copied before a new scope is entered.

e.new_proc_,scope, with e e ENVIRONMENT, marks the start of a new
inner scope that coincides with a procedure boundary. This operation is
needed to distinguîsh the local variables of the 'current' procedure from
all other variables in the program. This distinction is necessary for
proper environment restoration in try expressions (see below).

e.name_copy, with e e ENVIRONMENT, creates a copy of environment e.
If one looks at environments as sequences of name-value pairs, then this
operation creates a new sequence consisting of precisely the same name­
value pairs, with narnes identical to the narnes in the original, and with
value-parts that refer to the same values. This bas the effect that
modifications made to values referred to by value-parts in the original
and in the copied environment, are visible in both environments. How­
ever, bindings added to one of the environments will not be part of the
other.

e.partial_,state_copy, with e e ENVIRONMENT, creates a copy of environ­
ment e in the same manner as described for name _copy, except that,
under certain circumstances, the value referred to by a value-part is
copied. The latter is applicable to the pairs that satisfy the following two
requirements:

I) The value-part refers to alocation (say, /).

2) The binding between the name-part (say, n) and the value-part
occurred before the last new _proc _,scope operation.

For each such pair, n is bound to a new location f with contents v',
where v' is a copy of v if v e COMPOSITE -IN STANCE, and v' is the
same as v if v e BASIC-INSTANCE. The local variables of the

106 PRELIMINARIES TO THE DEFINITION OF SUMMER

current procedure are distingui$hed by partial.Jtate_copy. This is neces­
sary fora proper treatment of <try-expression>s {9.2.8}.

8.3.4. Evaluation process

The · evaluation process is described in SUMMER extended with parse expres­
sions1 of tbe form

' { {' <identifier> '==' <tagged-rule-body> '}}'

whicb provide a concise notation for parsing and extracting information from the text
of tbe souree program. The precise definition of a <tagged-rule-body> is as follows:

<tagged-rule-body> :: = ([<tag> ':'] <primary>)* •

<tag> :: = <lower-case-letter> (<lower-case-letter> I <digit>)* .

These syntax rules extend the syntax notation given in Section 8.1.

A parse expression succeeds if the identifier on the left-hand-side of the '=='
sign bas a string as value and if this string bas the form described by the <tagged­
rule-body> on the right of the '==' sign. All <tag>s occurring in the <tagged-rule­
body> should have been declared as variables in the program containing the parse
expression, in this case the evaluation process. Substrings of the parsed text recog­
nized by tbe syntactic categories on the right-hand-side of a':' symbol are assigned to
the variabie that occurs on its left-band-side. Consider, for example, the following
program fragment:

if {{ e •= WHILE t:<test> DO b:<body> OD }}

then
put('While expression recognized')

fi

Tbe parse expression will succeed if e bas the form of a 'while expression'. Tbe literal
text of the <test> is then assigned to variabie t and the text of the <body> is

1 assigned to variabie b.

lf the recognized part of the text is a list or repetition, an array of string values
is assigned to tbe variable. In the case of a 'list of notions separated by separators,
the latter are omitted and only tbe notions occurring in tbe list are assigned to (con­
secutive) elements in the array. This is exemplified by:

if { { e = VAR list: { <identifier> ', '} + } }
then

put('Variable declaration contains: ');
for id in list do put(id) od

6.

The parse expression succeeds if e bas the form of a 'variable declaration' (i.e. the

I) There is no fimda_.,.l reason for introducing tbis rather ad hoc language extension. However, the disad­
vantage ot introducing it is more than compensated by the fact that it is sufficiently similar to BNF notation to
be almost seU -explanatory. The el!' eet of introducing a language ex lension as proposed bere is interesting in its
own rigbt but tbis falls outside tbe scope of the current discussion.

8.3.4. Evaluation process 107

keyword 'var' foliowed by a list of <identifier>s separated by commas) and in that
case · an array of string values corresponding to the <identifier>s occurring in the
declaration is assigned to the variabie list, which is subsequently printed.

var ENV;
var ENVglobal;
var STATE;
var varinit;
proc ERROR •.. ;

Immediately aborts the evaluation process #

proc eval_call(procname, actuals) ... ;
Evaluates procedure calls; this includes the #

creation of new class instances. #

proc evaLjield_selection(access...type, object, field, octuals) . .. ;
Evaluates a field selection. #

proe has_field(access_type, object, field) ... ;
Utility procedure todetermine whether a given #

field selection can be performed. #

proc expand_,ruper_class(c) .. . ;
Utility procedure used for class declarations. #

proc evaLarray_jnit(sz, def, initexpr) ... ;
Evaluates array initializations. #

proe eval.Jab/e_jnit(sz, def, initexpr) ... ;
Evaluates table initializations. #

proc eval(e)
(var v, sig, ... ;

);

if { { e == <summer-program> } }
then

return([v, sig])
fi•
' if { { e == <variable-declaration> } }

then

return([v, sig])
fi·
'

if {{ e == <empty> }}
then

return([v, sig))
fi;

FigW'e 8.1. General organization of evaluation process.

108 PRELIMINARIES TO THE DEFINITION OF SUMMER

Parse expressions may be used in if-expressions or may stand on their own. In
the latter case, the string to be parsed has to be of the form described by the parse
expression. In this way, parse expressions can be used to decompose a string with a
known form into substrings.

Now we turn our attention to the evaluation process. lts overall structure is
given in Figure 8.1. Five utility procedures (require _constant _expression , equal,
string _equal, substring and dere f erenee) are not shown there.

The variables ENV and ENVglobal have as respective values the current
environment and the environment at the moment that all global declarations have
been evaluated. The variabie ST A TE has the current state as value. The variabie
varinit has as value a string consisting of the text of all <variable-initialization>s in
the current <block>.

The main procedure is eva/, which selects an appropriate case depending on the
syntactic form of its argument e. The details of these various cases will be given in
the next chapter. The evaluation process is initialed by creating an initial empty
environment ENV and by calling eva/ with the text of the souree program as argu­
ment. If the evaluation process is not terminated prematurely (by the detection of a
semantic error), the result of the evaluation of the souree program can be obtained
from the resulting environment ENV. It is assumed that evalis initially called with a
syntactically correct SUMMER program, i.e. a string that bas the form of a <summer­
progtam>.

The definition of SUMMER has been profoundly infiuenced by the success­
directed evaluation scheme in the language: an expression can either fail or snceeed.
·Th~ meaning of faiture is that evaluation of the 'current' expression is abandoned and
that evaluation is continued at a point where a 'handler' (i.e. <if-expression>,
<while-expression>) occurs to deal with the faiture case. A similar situation exists
for <return-expression>s, which terminate the evaluation of a: procedure call and
thereby abandon the evaluation of (possibly nested) expressions. Both language
features can thus infiuence the tlow-of-control in a program.

How are these properties of SUMMER retlected in the definition? The procedure
eva/ delivers as result an array of the form [value, signa/], where value is the actual
result of the procedure and signa/ is a success/failure tlag that indicates how value
should be interpreted. The signal is used to describe the occurrence of failure and/ or
<return-expression>s and may have the following values:

N: evaluation terminated normally.

F: evaluation failed.

NR: normal return; a <return-expression> was encountered during evaluation.

FR: faiture return; a faiture return was encountered during evaluation.

The signal is tested after each (recursive) invocation of eva/. In most cases eva/ per­
forms an immediate return if the signal is not equal to N after the evaluation of a
subexpression. Exceptions to this rule are of two kinds:

o The semantics of eertain constrocts is such that the tlow of control is intention­
ally infiuenced by the success or faiture of expressions (e.g. <test>s in <if­
expression>s). This corresponds in eva/ to appropriate reactions to N and F
signals. Aborting the evaluation of the 'current' expression, which is necessary
if faiture occurs in a deeply nested subexpression, can be achieved by passing

8.3.4. Evaluation process 109

an F signal upwards until it reaches an incamation of eva/ that can take
appropriate measures.

o The semantics of the <return-expression> is such that the execution of the pro­
cedure in which it occurs is terminated and that execution is to be continued at
the place of invocation. This is refiected by the signal values FR and NR, that
are only generated by <return-expression>s and are only handled by the
semantic rules associated with procedure eaUs. The latter rulesturn NR into N
and FR into F before the evaluation process is resumed at the point where it
left off to perform the (by then completed) procedure eaU. All other semantic
rules return immediately when an NR or FR signal occurs.

8.4. Features oot specified in the definition

Chapters 8, 9 and 10 form a nearly complete definition of the SUMMER pro­
gramming language. There are, however, a few language features that are left
unspecified in the formal definition. These features are now briefiy summarized.

Chapters 8 and 9 define a kemel of SUMMER, i.e. a small subset of the language
that allows a semantic description of the whole language using only primitives in this
kemel. In chapter 10 these primitives are used to define more elaborate data types.
To reduce the size of the definition of the kemel, the availability of three data types
(classes) is assumed in the definition of the kemel which are defined only informally
in chapter 10. These classes are: rea/ {10.3}, array {10.5} and table {10.7}.

The definition does not formally define the priorities of operators. lt is
assumed that all expressions are fully parenthesized in order to establish the relative
priorities of monadic and dyadic operators. This is further discussed in Sections
9.2.14, 9.2.15, 9.2.16 and 9.2.17.

The operating system interface is not specified. This is apparent in the way
arguments are passed from the operating system to SUMMER programs {9.1} and in
the way SUMMER programs communicate with the operating system if certain opera­
tions on files have to be performed. Except for opening and closing files, all file
operations can be modeled by means of string operations. Only two additional
semantic primitives (open and close file) would then be needed to describe files com­
pletely. For reasons of simplicity, these two primitives havenotbeen included in the
current definition.

8.5. References for chapter 8

[Gordon79] Gordon, M.J.C., The Denotational Description of Programming
Languages, Springer-Verlag, 1979.

[Liskov77]

[Reynolds72]

[Wegner72]

Liskov, B., Snyder, A., Atkinson, R. & Schaffert, C., "Abstraction
mechanisms in CLU", Communications of the ACM, 20 (1977) 8, 564-
576.

Reynolds, J.C., "Definitional interpreters for higher-order
languages", Proceedings ACM Annual Conference, 1972, 717-740.

Wegner, P., "The Vienna Definition Language", Computing Surveys,
4 (1972), 5-63.

llO

9. A SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

9.1. Deelaradons

Deelaradons introduce new narnes into the current environment and generally
associate a value with those names. The effect of a declaration is limited by the scope
in which it occurs. A scope is a part of a program that can be derived from one of
the syntactic notions <summer-program>, <procedure-declaration>, <operator­
deelaration>, <class-declaration> or <block>. Scopes can be nested. All narnes
defined in one scope must be distinct, but narnes in different scopes may be the same.
In the format definition a new scope is intróduced by the operations new_inner_,ycope
and new_procJcope {8.3.3}.

9.1.1. Summer program

9.l.l.a. Syntax

<summer-program> :: =
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <óperator-declaration> I
<class-declaration> I <operator-symbol-declaration>

)*
<program-declaration> .

<program-declaration> :: =
PROGRAM <identifier> '(' [<identifier>] ')' (<expression>].

9.t.1.b. Pragmatics

All syntactically correct programs are derived from the non-terminal
<summer·program>, the start symboJ of the granunar. The evaluation of a
<summer-program> proceeds in three steps:

I. Evaluate all <variable-declaration>s {9.1.2}, <constant-declaration>s {9.1.3},
<procedure-declaration>s {9.1.4 }, -:;:operator-declaration>s {9.1.4 }, <class­
declaration>s {9.1.5} and <operator-symbol-declaration>s {9.1.6} immediately
contained in the <summer-program>. We will refer to the resulting environ­
ment as the global environment. lt is described by ENVgloba/ in the formal
definition.

2. Evaluate all non-empty <variable-initialization>s {9.1.2} in <variable­
declaration>s immediately contained in the <summer-program>. The text of
these <variable-initialization>s bas been accumulated in the previous step and
is available as the value of varinit.

3. If the <program-declaration> bas a formal parameter (it may have at most
one) then obtain, in a way left unspecified in this definition, an array of string
values that correspond to the actual parameters of the invocation of the
<Summer-program> from the oommand level of the operating system. If, for
example, some <summer-program> P with formal parameter args is invoked
by the operating system oommand line:

P -x abc l 3

then args gets a value as if the assignment .

9.1.1. Summer program 111

args :=['-x', 'abc', '1', '3']

had been performed. Note that the command syntax is operating system
dependent

4. Evaluate the <expression> {9.2} part of the <program-declaration> in the
environment established in step 1 and the state initialized in steps 2 and 3
above.

9.l.l.c. Senaantics

Notes

if { { e == dec/list: (<Variable-declaration> I <constant-declaration> I
<procedure-declaration> I <operator-declaration> I
<class-declaration> I <operator-symbol-declaration>

)*
progdecl: <program-declaration> } }

then

ft;

var body, deel, name, progargs, v, sig;

varinit : = ";
for deel in deellist
do [v, sig] : = eva/(deel);

if sig -= N then ERROR ft
od;
for name in ENV.names
do var b : = ENV.binding(name);

if is_proc(b) then b.env : = ENV ft
od;
ENVglobal : = ENV;
[v, sig] : = eval(varinit);
if sig -= N then ERROR ft;
{ { progdecl == PROGRAM <identifier> '(' progargs:[<identifier>] ')'

body:[< expression>]
}};
ENV.new _proc.,Jcope;
if { { progargs == <identifier> } }
then

ENV.bind(progargs, ST ATE.extend(get_program_arguments))
ft•
' [v, sig] : = eval(body);

return([v, sig]);

1) The list of declarations is evaluated from left to right.

2) The environment component of all PROCEDURE values in the current
environment is adjusted, in order to resolve forward references. This is fully
discussed inSection 9.1.4.

112 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

3) Regarding the treatment of signals other than N, <Variable-initialization>s are
treated differently when they occur in a <summer-prograrn> (above), in an
<identifier-or-call> related to a class creation procedure {9.2.2}, or in a
<block> {9.2.11 }.

4) The parse-expression ' { { progdecl == PROGRAM • • • } }' always succeeds. lts
only purpose is to extract components from the <prograrn-declaration>.

5) The function get_program_arguments delivers the arguments of the program as
described previously. It is not further specified in this definition.

9.1.1. Variabie declarations

9.1.2.a. Syntax

<variab1e-dec1aration> :: = VAR { <variable-initialization> 1
,

1
} + 1

;
1

•

<variable-initialization> :: = <identifier> [1:= 1 <expression>] .

9.1.2.b. Pragmatics

A <variable-declaration> introduces a series of new variables, i.e. narnes of
locations whose contents may be inspected and/or modified, into the current environ­
ment The dec1aration may contain <expression>s {9.2} whose value is to be used
for the initialization of the declared variables. If the <variable-declaration> is
immediately contained in a <summer-prograrn>, then these initializing expressions
are evaluated prior to the evaluation of the <prograrn-declaration> {9.1.1} in that
<summer-program>. If the <variable-dec1aration> is immediately contained in a
<class-declaration> {9.1.5}, then these initializations are evaluated prior to the
evaluation of the init-part of that <class-declaration> {9.2.2}. Otherwise, the initial­
izing expressions are evaluated prior to the evaluation of the <expression> part of the
<block> {9.2.11} in which the <variable-declaration> occurs. In the formal
definition this is described by appending variabie initializations to the string value of
variabie varinit and by evaluating that value at appropriate moments (i.e. before the
evaluation of a <prograrn-declaration>, the init-part of a <class-dec1aration>, or the
<expression> part of a <block>).

9.1.2.c. ~mantics

if { { e == VAR varlist: { <variable-initialization> 1
,' } + 1

; ~ } }

then
var name, onevar;

for onevar in varlist
do if { { onevar == name:<identifier> 1:= 1 <expression> } }

then
varinit: = varinit 11 onevar 11 '; 1

else
{ { onevar == name: <identifier> } }

fi;
ENV.bind(name, ST ATE.extend(a_undefined))

od;
return ([a_undejined, N J)

fi;

9 .1.2. V ariabie declarations 113

Notes

I) varinit is initialized to the empty string before the evaluation of a <summer­
program> {9.l.l}, of a class creation procedure {9.2.2}, or of a block {9.2.11 }.

2) The operator '11' denotes concatenation of strings {10.4}.

9.1.2.d. Examples

I) var x;

2) var x, y, z;
3) var x:= 3,y,z :=x+ 5;

9.1.3. Constant dedarations

9.1.3.a. Syntax

<constant-declaration> :: == CON ST { <constant-initialization> ',' } + ';' .
<constant-initialization> :: = <identifier> ':=' <constant-expression> .

9.1.3.b. Pragmadcs

A <constant-declaration> introduces a series of new constants, e.g. narnes with
which one, unalterable, value is associated, into the current environment.

9.1.3.c. Semandcs

Notes

if { { e === CONST constlist: { <constant-initialization> ',' } + ';' } }
then

var cexpr, name, oneconst, v, sig;

for oneconst in constlist
do {{ oneconst == name:<identifier> ':=' cexpr:<constant-expression> }};

require_constant_expression (cexpr);

od;

[v, sig] : = eval(cexpr);
if sig ,.....,. N then ERROR fi;
ENV.bind(name, v);

return ([a_undejined, N])
fi;

I) The function require_constant_expression {9.2.18} ensures that a given <expres­
sion> only contains constants.

2) The evaluation of <constant-expression>s is defined in 9.2.18 and is identical to
the evaluation of 'ordinary' <monadic-expressions> {9.2.16} and <dyadic­
expressions> {9.2.17}.

9.1.3.d. Examples

1) consta:= 1;

114 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

2) oonst a : = 1, b : = 3 • (a + 1), c : = 'abc' ;

9.1.4. Procedure and operator declarations

·9.1.4.a. Syntax

<procedure-dec1aration> : : =
PROC <identifier> <formats> [<expression>] ';' .

<operator-declaration> :: ==
OP <operator-symbol> <formats> [<expression>] ';'.

<formals> : : = ' (' { <identifier> ', ' } • ')' .

. 9.1.4.b. Pragmatics

· Both procedure and operator declarations associate a piece of program with a
certain name or operator symbol. This association is made at the moment of declara­
tion. How this piece of program can be invoked later on is described in sections
9.2.2, 9.2.1~ and 9.2.17.

9.1:4.c. Semantics

Notes

if { { e == PROC id: <identifier> <formats> [<expression>] ';' } } I
{ { e === OP id: <operator-symbol> <formals> [<expression>] ';' } }

then

fi•
'

ENV.bind(id, a_proc(e, undefined));
return([a_undefined, N])

1) An a_proc object with undefined enruonment component is created. This
environment component will be replaced by a well-defined environment in
either of two ways. If the declared procedure is global (i.e. if its declaration is
immediately contained in the <summer-program> {9.1.1 }), the undefined
environment component is replaced ~y the global environment before the
evaluation of the <program-declaration>. In this way forward references are
dealt with. If · the declared procedure is, on the other hand, contained in a
<class-declaration> {9.1.5}, the undefined environment component is replaced
by a well-defined environment at the moment that an instanee of the class is
created {9.2.2}.

9.1.4.d. Examples

1) procjac(n)
(ifn=O

then
return(1)

else

);

return(n • Jac(n - 1))
ft

{The procedure Jac computes the factorial function.}

9.1.4. Procedure and operator declarations 115

2) proc positive(x) return(x > 0);

{The procedure positive succeeds if its argument is greater than zero and fails
otherwise. A typical use of this procedure is:

if positive(x) then put('x is positive') fi

}

3) op +?(x) return(x > 0);

{The user-defined monadic operator '+ ?' has the same effect as the procedure
positive of example 2 above. A typical use is:

if +? x then put('x is positive') fi

}

9.1.5. Class deelaradons

9.1.5.a. Syntax

<class-declaration> :: =

CLASS <identifier> <formats>
BEGIN <subclass-declaration>

<fetch-associations> <store-associations>
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration>
)*
[INIT ':' <block> 1

END <identifier> ';' .

<subclass-declaration> :: = [SUBCLASS OF <identifier> ';' 1 .
<fetch-associations> :: = [FETCH <associations> ';' 1 .

<store-associations> :: = [STORE <associations> ';' 1 .
<associations> :: = { <association> ',' } + .
<association> :: = <field-identifier> [':' <identifier> 1 .
<field-identifier> :: = <identifier> I <operator-symbol> .

9.1.5.b. Pragmatics

Classes form a data abstraction mechanism and provide the only means of
declaring new data types. A <class-declaration> introduces a new data type or class
and all operations which may be performed on objects or instances of that class. An
instanee of a class may be looked upon as consisting of a number of fields. Fields
may either be passive (and act as simpte variables) or be active (and act as prq­
cedures).

The <class-declaration> may contain declarations for variables, constants, pro­
cedures and operators. All entities so declared can be used freely inside the class, but
access from the outside is completely controlled by <fetch-associations> and <store~
associations>, which determine the narnes that are visible outside the class. The
former specify which parts of the class instanee may be used ('fetched'), the latter

116 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

specify which components may be modilied ('stored in'), i.e. may occur on the 1eft
hand side of an assignment operator (9.2.17}. Both kinds of associations allow the
specification of a procedure in the <class-declaration> which will perform the actual
access. The process of inspecting or modifying the value of one of the fields of a class
is called field selection {9.2.14}.

A riew instanee of a class is created by invoking a elass creation procedure,
which is derived from the class declaration, as described in secdon 9.2.2.

A new class may inherit properties from a previously declared class; this is
indicated by a <subclass-declaration>. RoQ.ghly speaking, the declaration of a class
whose name occurs in a <subclass-declaration> is literally substituted for that
<subclass-declaration>. If a <class-declaration> C contains a non-empty <subclass­
declaration> and that <subclass-declaration> contains the <identifier> C' , then C is
said to be a subclass of C', or conversely, C' is said to be a superclass of C. In prin­
ciple, C inherits all of the properties of C' , unless they are explicitly redefined in C.
This notion of inheritance is realized by adding (parts of) the <class-declaration>. of
C' to the <class-declaration> of C. The procedure expand_super _class performs this
transformation.1 Two additional narnes for parts of a <class-declaration> will be used
in the following algorithm: class-declaration,part will be used to denote all <variable­
declaration>s, <constant-declaration>s, <procedure-declaration>s and <operator­
declaration>s contained in the <class-declaration>; class-initialization-part will be
used to denote the <block> immediately following the 'init' keyword in the <class­
declaration>. The following steps describe the process of superclass expansion in
detail:

I. Formal parameter oorrespondence. The formal parameters of C should be an
extension of the formal parameters of C' : if the number of formal parameters
of C and C' is N and N' respectively, then N' .;;; N should hold and the
narnes of the first N' , corresponding, parameters of C and C' should be the
same.

2. Check compatibDity of dedarations. If a name A is declared in the class­
declaration-parts of both C and C', then those declarations should be similar,
i.e. A should in both cases be declared by the same kind of declaration. This
forbids, for instance, that variables are redeciared as procedures and vice versa.
This restrietion ensures that the result of step 6 (see below) is well-defined.

3. Superclass transformation. If the declaration of C' contains a non-empty
<subclass-declaration> then the declaration of C' should first be transformed
as described in this paragraph.

4. Combine associations. <fetch-associations> and <store-associations> are
inherited from C', unless they are redefined in C. An <association> A occur­
ring in C' is said to be redefined if and only if the <field-identifier> contained
in A , also occurs as <field-identifier> in either <store-associations> or <fetch­
associations> of C. All <associations> not redefined in the <fetch­
associations> of C' are added to the <fetch-associations> of C. All <associa­
tions> not redefined in the <store-associations> of C' are added to the <store­
associations> of C .

I) The forma! definition of this procedure is not given.

9.1.5. Class declarations 117

5. Combine declaration parts. Prefix the class-declaration-part of C with the
class-declaration-part of C' from which all redefined declarations have been
removed.

6. Combine init parts. Prefix the class-initialization-part of C with the class­
initialization-part of C' .

9.1.5.c. Semantics

Notes

if { (e == CLASS cname I: <identifier> <formats>
BEGIN <subclass-declaration>

<fetch-associations> <store-associations>
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <óperator-declaration>
)*
[INIT ':' <block>)

END cname2:<identifier> ';' }}
theo

ft;

var el;

el : = expand_super_class(e);
if -string_equal(cnamel, cname2) then ERROR fi;
ENV.bind(cnamel, a_class(cnamel, el));
return([a_undejined, N))

1) The result of expand_super_class is a string that bas the form of a <class­
declaration> containing an empty <subclass-declaration>.

9.1.5.d. Examples

1) class complex(re, im)
begin fetch re, im;

store re, im;
end complex;

{Defioes the class complex with fields re and im. Both fields may be inspected
('fetched') and modilied ('stored'). A typical use of this class is:

c : = complex(l.4, 3.7);
x:= c.re

First, a new instanee {9.2.2} of class complex is assigned to variabie c. Next,
the field re is fetched from that instance. The net effect is that 1.4 is assigned
to variabie x.}

· 2) class stack(n)
begin fetch push, pop;

var sp, space;
proc push(x)
(ifsp•n

theo
freturn # stack overflow #

118 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

el se

fi

space[sp] : = x; sp: • sp + 1;
return(x)

);
procpop()
(ifsp=O

);

then
freturn # stack underftow #

else
sp : .. sp - 1; return(space[sp))

fi

init: sp : = 0; space : = arr~(n, undefined)
end stack;

{Defines the class stack with operations push and pop. Note that only these
fields are accessible from the outside. A typical use of this class is:

s : = stack(lO);
s.push(I); s.push(2);
x : = s.pop; y : = s.pop

which assigns, ultimately, 2 to x and 1 toy.}

3) class random__access_stack(n)
begin subclass of stack;

fetch access;
proc access(i)
(ifi>= O&i<sp

then

);

return (space[i])
el se

freturn # out of range#
fi

end random__access_stack;

{Declares the class random__access_stack: a kind of stack that oot only defines
the operations push and pop, but also defines the operation access to inspeet the
value of an arbitrary element on the stack. This declaration uses a <subclass­
declaration> to extend the class stack given in the previous example with the
new operation. The above declaration is completely equivalent with the follow­
ing declaration:

dass random__access_stack(n)
begin fetch push, pop, access;

var sp, space;
proc push(x)
(ifsp=n

then
freturn # stack overftow #

else

ft

9.1.5. Class declarations

space[sp] :=x; sp := sp + I;
return(x)

);
procpop()
(ifsp=O

);

then
freturn # stack underfl.ow #

el se
sp : = sp - I; return(space[sp])

ft

proc access(i)
(ifi>=O&i<sp

then

);

return (space[i])
else

freturn # out of range #

ft

init: sp : = 0; space : = array(n, undeftned) ·
end random_access_stack;

119

This second declaration of random_access_stack is the result of appiying
expand_super _class to the first declaration of random_access_stack given
above.}

9.1.6. Operator symbol dedarations

9.1.6.a. Syntax

<operator-symbol-declaration> :: =

(MONADIC I DYADIC) { <operator-symbol> ',' } + ';' .

9.1.6.b. Pragmatics

An <operator-symboi-declaration> indicates that the <operator-symbol>s con­
tained in it denote user-defined monadic or dyadic operators. An <operator-symbol­
declaration> is only required for <operator-symbol>s that are used before they are
declared (in an <operator-deciaration> {9.1.4}). Since arbitrary sequences of
<operator-symbol>s can follow each other without intervening layout symbols, it is
necessary to have rules for disambiguating certain combinations of <operator­
symbol>s. For example, should

x+-y

be interpreted as

x + (-y)

with + dyadic and - monadic, or as

x+- y

120 SEMI-FORMAL J;>EFINITION OF THE SUMMER KERNEL

, with + - dyadic? The following rules describe the deoomposition of adjacent
<operator-symbol>s. An <operator-symbol> occurring at the syntactic position of a
<monadic-operator> is decomposed in one or more 'monadic' <operator-symbol>s.
An <operator-symbol> occurring at the position of a <dyadic-operator> is decom­
posed into one 'dyadic' <operator-symbol> and zero or more 'monadic' <operator­
symbol>s. These rules are sufticient because there are no postfix operators in SUM­

MER.

The decomposition rules are now described in detail. For each <operator­
symbol> that occurs at the position of a <monadic-operator> (or <dyadic­
operator>) the longest initial substring S of the <operator-symbol> is taken such
that:

1. Sis of the form '_'(<letter> I <digit>)+ '_', or

2. S is a <monadic-operator> (or <dyadic-operator>), and either S occurs as
<operator-symbol> in an <operator~declaration> with one (or two) <for­
mals>, or S occurs as <operator-symbol> in a <operator-symbol-declaration>
that contains the keyword 'monaclic' (or 'dyaclic').

If no such substring exists, the original <operator-symbol> is not identified. If S is a
proper substring of the <operator-symbol>, the tail of the <operator-symbol> should
be decomposable into one or more <monadic-operator>s (in both cases).

9.1.6.c. Semantics

<operator-symbol-declaration>s only affect the lexical structure of a program
but have no associated semantics.

Notes

1) An <operator-symbol-declaration> may only occur at the outermost level of
declarations, i.e. immediately contained in a <summer-program>.

2) An <operator-symbol> may not occur in both 'monadic' and 'dyadic'
<operator-symbol-declaration>s.

9.1.6.d. Examples

I) monadic +?, **•@ ;

{Declares the three <operator-symbol>s '+?', '**' and '@' as monadic opera­
tors. After this declaration, the expression a•••b will be interpreted as
a•(**b).}

2) dyadic < =>, **• _matvec_ ;

{Declares the three <operator-symbol>.s '<=>','u' and '_matvec_' as dyadic
operators. After this declaration, the expression a•••b will be interpreted as
O**(*b).}

9.2. Expressions

SUMMER is an expression oriented language: most language constructs can be
derived from the syntactic notion <expression> and can deliver a value. The main
rules related to expressions are:

9 .2. Expressions 121

<expression> :: = <dyadic-expression> .

<monadic-expression> :: = (<monadic-operator>)* <primary> .

<monadic-operator> :: = '-' I'- ' I <operator-symbol> .

<dyadic-expression> :: =
<monadic-expression> (<dyadic-operator> <monadic-expression>)* •

<dyadic-operator> :: =
'+' I'-' I '•' 1'1' 1'%' 1'11' I'<' I'<=' I'>' I'>==' I
'=' 1'---' 1':=' I'&' 1'1' I <operator-symbol>.

<primary> :: = <unit> (<subscript> I <select>)* .

<Unit>::=
<constant> I <identifier-or-call> I <return-expression> I
<if-expression> I <case-expression> I <whlle-expression> I
<for-expression> I <scan-expression> I <try-expression> I
<assert-expression> I <parenthesized-expression> I
<array-expression> I <table-expression> .

Note that the rules for <monadic-operator> and <dyadic-operator> are ambiguous,
i.e. their first alternatives are all subsumed by the last one that refers to an
<operator-symbol>. Nonetheless, this distinction bas been made to stress the
privileged position of certain operators (regarding, for instance, syntactic priority).
See also Sections 9.2.16 and 9.2.17.

A more detailed description of <expression>s follows.

9.2.1. Constants

9.2.l.a. Syntax

<constant> :: == <string-constant> I <integer-constant> I <real-constant> .

9.2.t.b. Pragmatics

<constant>s provide an alternative, more convenient, notation for the values of
some built-in classes. When a constant is encountered during evaluation, a new
instanee of the conesponding class is created.

9.2.l.c. Semantics

The semantics of <integer-constant>s is:

'if {{ e == expr:<integer-constant> }}
then

return((a_integer(expr), N])
ft;

122 SEMI-FORMAL DEFINITION O.F THE SUMMER KERNEL,

The semantics of <string-constant>s is:

if {{ e =- expr:<string-constant> }}
then

fi;

expr: • substring(expr, l, expr.size - 2);
return((a__string(expr), N])

The semantics of <real-constant>s is:

Notes

if { { e -- expr: <real·constant> } }
then

return (eval_call('real ', a__string(expr)))
fi;

I) The fust and last character (i.e. the surrounding quotes) of a <string-constant>
are first deleted before a new instanee of class string is created.

2) The semantics of the class real are not given as part of the definition of the
SUMMER kemel (8.4}. Here, it is only established that <real-constant>s are
denotations for instances of the class real; the semantics of the class real itself
is described informally in the next chapter {10.3}.

9.2.l.d. Examples

1) 'star\twars'

2) 314

3) -3.14e+5

9.2.2. Ieientiiiers and proceelure calls

9.2.2.a. Syntax

<idenûfi.er-or-call> :: • <idenûfi.er> [<actuals>] .

<actuals> :: • '(' { <expression> ',' }• ')'.

9.2.2.b. Pragmatics

Wben an <idenûfi.er> occurs in an <expression> {9.2}, it depends on the
existenee and kind of binding of that <idenûfi.er> what will be the result of its
evaluation. If the <idenûfi.er> is bound toa value in INSTANCE or LOCAT/ON,
that value will be the result. This value is not dereferenced (9.3.1 }, i.e. if the value is
a location, that location itself and not its contents are the result. If the <idenûfi.er> is
bound to a value in PROCEDURE or CLASS, the <idenûfi.er> is evaluated as a
procedure call (see below). If none of the above cases applies, a field selection
{9.2.14} from the current value of subject is performed {9.2.9}.

A procedure call serves the purpose of temporarily suspending the current
evaluation and starting the evaluation of the procedure associated with the
<idenûfi.er> in the <idenûfi.er-or-call>. The <idenûfi.er> may be foliowed by a (pos­
sibly empty) list of <actual>s. The <expression>s in <actuals> are evaluated from
left to rigbt. The dereferenced value of eaçh <expression> is passed as actual param­
eter to the called procedure. Sinee that value. may be an instanee of a class that

9.2.2. Identifiers and procedure calls 123

allows modification of its instanees (say, an array { 10.5}), modifications made to that
instanee are visible in the calling context. However, the contentsof locations bound
to local variables of the caller can never be modilied by the called procedure. In CLU

[Liskov77], this parameter passing mechanism has been named call-by-sbaring.

The procedure call itself is handled by eval_call. If the name of the procedure
to be called is either string {10.4}, or integer {10.2}, or undefined {8.3}, or type
{10.11.5}, then the call is treated separately by eval_.standard_procedure as can be
seen in the formal definition. Otherwise, there are two cases, depending on whether
the <identifier> in the procedure eaU is bound to a value in PROCEDURE or in
CLASS.

In the former case, the procedure bas to be evaluated in the environment of its
declaration. To this end, the current environment is saved, a copy of the declaration
environment of the procedure is made the current environment and the <formals> in
the associated <procedure-declaration> are bound from left to right to the values of
the <actuals> in the call. Next, the body of the procedure is evaluated and the result
of this evaluation is the result of the procedure call. Finally, the previous (saved)
environment is restored. Note how in the formal definition (see below), an FR signal
is turned into an F signa!, and how an NR signalis tumed into an N signa!; this was
already discussed inSection 8.3.4.

If the <identifier> in the procedurecallis bound toa value in CLASS, a new
instanee of that class must be created. This amounts to creating a new composite- · •
instanee that contains an, appropriately adjusted, copy of the declaration environment
of that class. To this end, the following steps are taken. First, the current environ-
ment is saved. N ext, a copy of the declaration environment is created and the <for-
mals> are bound to actual values as described above. In addition to this, all declara-·
tions in the associated <class-declaration> are evaluated and a new instanee is
created, containing the name of the class and the environment just constructed. The
new instanee is bound to the identifier self in the new environment. If the <class­
declaration> contains an init-part, then the <block> following the 'init' keyword is
evaluated in the new environment. Finally, the original environment is restored and
the instanee is retumed as the result of the procedure call.

9.l.2.c. Semantics

The semantics of an <identifier-or-call> is:

if {(e === id:<identifier> act:[<actuals>) }}
then

var actual_vals, exprlist;

if {(act == '(' exprlist: { <expression> ',' }* ')' } }
tben

var i, v, sig;

actual_vals : = array(exprlist.size, undefined);
for i in exprlist.index
do [v, sig] : = eval(exprlist[i]);

if sig, .. N tben return([v, sig)) fi;
actual_vals[i] : = dereference(v);

od;
else

124 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

ft;

actual_vals : = array(O, undefined);
ft;
if ENV.has_binding(id)
then

var idbinding : • ENV.binding(id);

if is.Jnstance(idbinding) I isJoc(idbinding)
then

if { { e = <identifier> } }
then

return([idbinding, N])
else

ERROR
6

elif is_proc(idbinding) I is_class(idbinding)
then

retum(eval_call(id, actual_vals))
else

ERROR
6

else
return (eva/_Jield_selection('jetch', ENV.binding('subject'), id, actual_vals))

ft

The definition of eva/_ca/1 is:

proc eval_call(procname, actuals)
(var procdef;

if procname = 'string' I procname = 'integer' I
procname = 'undejined' I procname = 'type'

then
return((eval_standard_procedure(procname, actuals), N])

ft; .

procdef: = ENV.binding(procname);
lf is_proc(procdef)
then

var body, ENVI,formols, i, v, sig;

{ { procdef.text ==

} };

PROC <identilier> '(' fomuJ/s: { <identilier> ','}• ')'
body: [<expression>] ';'

if actuals.size -= formals.size then ERROR ft;
ENVl := ENV;
ENV: = procdef.env.name_copy;
ENV.new_proc_scope;
for i in actuals.index
do ENV.bind(Jormals[i], STATE.extend(actuals[i])) od;
[v, sig] : = eval(body);
ENV:• ENVI;

I

9.2.2. Identifiers and procedure calls

case sig
of N: NR: return([v, NJ),

F: FR: return([v, F])
esac

else
is_class(procdef) #

var formals, deels, initexpr, ENVI, variniti;
var name, instance, d, v, sig, expr, i;

{ { procdeftext ====
CLASS <identifier> '(' formals:{ <identifier> '.'}* ')'
BEGIN <fetch-associations> <store-associations>
deels: (<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration>
)*

initexpr: [INIT ':' <block>)
END <identifier> ';'

} };
ENVI := ENV;
ENV : = ENVglobal.name_copy;
ENV.new_jnner _scope;
varinitl : == varinit;
varinit : == ";
if actuals.size --= formals.size tben ERROR fi;
for i in actuals.index
do ENV.bind(formals[i], ST ATE.extend(actuals [i])) od;

for d in deels
do [v, sig] : = eva/(d);

if sig N tben ERROR fi
od;
for name in ENV.names
do var b : = ENV.binding(name);

if is_proc(b) & b.env = undefined then b.env : = ENV fi
od;

instanee : = a_composite_instance(procdef, ENV);
ENV.bind('self', instance);
[v, sig] : == eval(varinit);
varinit : == varinit I;
if sig -= N
then

ENV:= ENVl;

ft;

case sig
ofF:

FR:
NR:

esac

ERROR,
return([v, F]),
return([v, N])

if { { initexpr == INIT ':' expr:<block> }}
then

125

126 SEMI-PORMAL DEFINmON OFTHE SUMMER KERNEL

ft
);

ENV.new_procJcope;
[l', sig] : = el'al(expr);

else
[v, sig] : = [a_unde.fined, N]

ft;
ENV:= ENVl;
case sig
of F: FR: return([v, F]),

N: NR: return([instance, N])
esac

The definition of el'a!Jtandard_procedure is:

Notes

proc eva/Jtandard_procedure(procname, actua/s)
(case procname

);

of 'string':
if actuals.size -= I I -isJtring(actuals[O]) tben ERROR ft;

, return (aJtring(actuals[Q].stringval)),
'integer':

if actuals.size -= l I -is_integer(actuals[OJ) tben ERROR ft;
return (a_integer(actuals[O].intval)),

'undejined':
if actuals.size -== 0 then ERROR ft;
return ((l.Jmdejined),

'type':
ü actuals.size -= I then ERROR ft;
if isJtring(actua/s[O])
tben

return(aJtring('string'))
elü is_integer(actuals[O])
tben

return(aJtring('integer'))
elü is_undejined(actuals[O])
then

return(QJtring('unde.fined'))
else

is_composite...instance(actuals[O]) #

return (aJtring(actuals[O].class_j/ec/.name))
ft

esac

1) The lunetion dereference is described in {9.3.1}.

2) The above definition realizes a call-by-sharing parameter passing mechanism
(described previously).

9.2.2. Identifiers and procedure calls 127

3) The binding of self affects the environment component of the newly created
composite-instance.

4) Regarding the treatment of signals other than N, <variable-initialization>s are
treated dilferently when they occur in a <summer-program> {9.l.l }, in an
<identifier-or-call> related to a class creation procedure (see above), or in a
<block> {9.2.11}.

5) The treatment of <formals> of procedures and classes ditfers: the formals of a
procedure exist only temporarily during the call of the procedure; the formats
of a class are made part of the environment component of the new composite­
instance which survives the call of the class creation procedure.

6) The definitions of integer and string given above are slighûy simplified versions
of the definitions given in Sections 10.2 and 10.4 respectively.

9.2.2.d. Examples

1) x

{Has as value either the value of the (local or global) constant or variabie x,
the value of a call to the procedure (either a class creation procedure or an
ordinary procedure) with name x, or, if none of the previous cases applies, the
value of the field selection subject.x {9.2.9, 9.2.14}.}

2) fac(5)

{ Calls procedure fac with actual parameter 5.}

3) integer(' 123')

{ Calls the class creation procedure integer, which returns an instanee of class
integer { 10.2}.}

9.2.3. Return expressions

9.2.3.a. Syntax

<retum-expression> :: = FRETURN I RETURN ['(' <expression> ')'].

9.l.3.b. Pragmaties

Return expressions terminale the evaluation of the current procedure and give
control back to the caller of the current procedure. An 'freturn' causes the call of the
current procedure to fail. A 'return' not followed by an <expression>, transfers con­
trol to the caller without retuming a value. A 'return' followed by an <expression>
fust evaluates that <expression> and then transmits its value to the caller.

128 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

9.2.3.c. Semantics

The semantics of a return not foliowed by :m <expression> is:

if {{ e •• RETURN}}
tben

return([a_undefined, NR])
&;

The semantics of a return foliowed by an <expression> is:

if {{ e - RETURN'(' expr:<expression> ')'}}
then

fi;

var v, sig;

[v, sig] : = eval(expr);
v : • dereference(v);
case sig
of N: NR: return([v, NR]),

F: FR: return([v, FR])
esac

The semantics of an freturn is:

if { { e =- FRETURN }}

then

Notes

return([a_undefined, FR])
fi•

'

1) The environment of the caller is, ultimately, re-established by eval_call {9.2.2).

9.2.3.d. Examples

1) return

{Returns from the current procedure without delivering a value.}

2) return(x)

{Returns from the current procedure and delivers the value of x.}

, 3) return(x > 3)

{The same as the previous example, but note that the expression 'x > 3' can
fail. In that case the call to the current procedure also faits.}

4) freturn

{The call to the current procedure is completed and the call as a whole faits.}

9.2.4. If expressions

9.2.4. If expressions

9.2.4.a. Syntax

<if-expression> :: =
IF <test> THEN <block>
(ELIF <test> THEN <block>)*
(ELSE < block>) FI •

<test> :: = <expression> [FAILS I SUCCEEDS] .

9.2.4.b. Pragmatics

129

An <if-expression> corresponds to the if-then-else statement found in most
programming languages. First, the <test> part of the <if-expression> is evaluated.
A <test> is either an <expression> or an <expression> foliowed by 'fails' or
'succeeds'. The suffix operator 'fails' transforms failure into success and vice versa.
The suffix operator 'succeeds' bas no affect whatsoever, but exists for reasons of sym­
metry.

If evaluation of the <test> part of the <if-expression> terminates successfully,
the <block> following 'then' is evaluated. Otherwise, the <test>s of successive 'elif's
are evaluated until one of them terminates successfully (in which case the correspond­
ing <block> is evaluated) or the list is exhausted.· In the latter case, the <block> fol­
lowing 'else' (if any) is evaluated.

9.2.4.c. Semantics

The semantics of a <test> is:

if {{ e == expr:<expression> sf: (SUCCEEDS I FAILS) }}

then

fi;

if { { sj == SUCCEEDS } }

then
return(eval(expr))

el se

fi

var v, sig;

[v, sig] : = eva/(expr);
case sig
of F: return([v, N]),

N: return([v, F]),
FR: NR:return([v, sig])

esac

130 SEMI-FORMAL DEFINITION OF THE SUMMER.KERNEL

Thesemantics of an <if-expression> is:

Notes

if { { e == IF t:<test> THEN b:<block>
elifpart: (ELIF <test> THEN <block>)*
elsepart: [ELSE <block>] FI } }

then
var v, sig;
[v, sig] : = eval(t);
ifsig • N
then

return(eval(b))
ellf sig == NR I sig == FR
then

ft;

return([v, sig))
else

fi

var oneelif;
for oneelif in elifpart
do {{ onee/if =- ELIF t:<test> THEN b:<block>}};

[v, sig] :'"" eval(t);

od;

ifsig = N
theo

return(eval(b))
elif sig == NR I sig "" FR.
then

return([v, sig])
ft

if {{ elsepart - ELSE b:<block> }}
then

return(eval(b))
else

return([a....undefined, N))
ti

1) The case that a <test> contains neither 'succeecls' nor 'fails' is already covered
by the evaluation of <expression>s {9.2.16, 9.2.17}.

2) A <block> may be empty, see {9.2.ll}.

9.l.4.d. Examples

I) if x > 0 then put('x is positive') ti

2) if x> 0
then

put('positive')
else

put('negative or zero')
fi

3) if x> 0
then

put ('positive')
elifx=O
then

put('zero')
el se

put('negative')
fi

9.2.4. If expressions

4) y : = if x > 0 then I else 0 fi

9.2.5. Case expressions

9.2.S.a. Syntax

<case-expression> :: =

131

CASE <expression> OF { <case-entry> ',' }* [DEFAULT':' <block>) ESAC.

<case-entry> :: = { <constant-expression> ':' } + <block> .

9.2.5.b. Pragmatics

form
A <case-expression> provides a multi-way branch. A <case-expression> of the

case e0 of
kn:

k21:

: k1m 1 : e1,

: k2m
2

: e2 ,

kn I : : knmn : en

default : en+ I
esac

is equivalent to:

~ := eo;
if <J>=kn

elif </> = k21

elifcfl = kni

else e11 +I

fi

I </> = k1m 1 then e1

I </> = k2m
2

then ez

I cfl = knm then en
11

where cfl is assumed to be a name, not occurring elsewhere in the program. All
<case-entry>s must be constant expressions.

132 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

9.2.S.c. Semauties

lf { { e == CASE expr: <expression> OF
caselist: {<case-en try>·','}*
def: [DEFAULT':' <block>) ESAC } }

tben
var b, onecase, vl, v2; sig;

[vl, sig] : = eval(expr);
if sig -= N theD return([v1, sig]) 6;
vl := dereference(vl);
for onecase in caselist
do var onekey, keylist;

6·
'

Notes

{{ onecase === keylist:{ <constant-expression> ':'} + b:<block> }};
for onekey in keylist
do require_constant_expression (onekey);

[v2, sig] : = eval(onekey);
if sig .-. N then ERROR 6;
if equal(vl, v2) then retum(eval(b)) fi

od
od;
if {{ def == DEFAULT':' b:<block> }}
then

retum(eva/(b))
else

ERROR
fi

1) Tbe tunetion equal is described in {9.3.2}.

2) The tunetion dereference is described in {9.3.1 }.

3) The tunetion require_constant_expression is described in {9.2.18}.

4) lt is not required that the <constant-expression>s in all <case-entry>s are dis­
tinct. However, no nondeterminism is introduced by the multiple occurrence of
the same <case-entry>.

9.l.S.d. Examples

1) ease x of
'pi': put('name of pi as string'),
'3.14': put('va/ue of pi as string'),
3.14: put('value of pi as real')
default:put('x not recognized')

eSaC

. {Note that each <case-entry> may be of a different type.}

9.2.5. Case expressions

2) y:== 7;
x:= easeyof

1: 7: 13: spec_val
default: generaLval
esac

133

{Note how a <case-expression> delivers the value of the selected case as value.
Here, the value of spec_val is assigned to x.}

3) case type(x) of
'string': put('x has string as value'),

. 'integer': put('x has integer as value'),
'array': put('x has array as value')
default: put('type of value of x not recognized ')

esac

{Note how the combination of the procedure type { 10.11.5} and <case­
expression>s can be used for run-time type determination.} .

9.2.6. WhDe expresslons

9.2.6.a. Syntax

<while-expression> :: = WHILE <test> DO <block> on.

9.2.6.b. Pragmatics

Apart from the use of recursion to express iteration, <while-expression>s are,
in principle, the only available iteration construct. (In the next paragraph we will see
that a <for-expression> is only a syntactic shorthand for a special form of <while­
expression>.) As long as the <test> part of a <while-expression> succeeds, its
<block> will he evaluated.

9.2.6.c. Semantics

if {{ e === WHILE t:<test> DO b:<block> OD }}

then

ft·
'

var v, sig;

[v, sig] : = eval(t);
case sig
ofN:

F:
NR:FR:

esac;

do nothing #,

return((v, N]),
return([v, sig])

[v, sig) : = eval(b);
if sig -= N then return([v, sig]) ft;
return (eva/(e))

134 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

Notes

I) The <block> of a <while-expression> may not fail. Hit does fail, then evalua­
tion of the <while-expression> is terminated.

9.2.6~d. Examples

I) n : = 0;
whDe n < 10 do put(n, '\n'); n : • n + I od

{Prints the integers from 0 to 9 on consecutive lines.}

2) while line : • input.get do process(line) od

{Processes all lines of the file to which the variabie input refers. The operation.
input.get { 10.9} fails on end-of-file.}

9.2.7. For expressions

9.2. 7.a. Syntax

<for-expression> :: = POR <identifier> IN <expression> DO <block> oo .

9.2. 7.b. Pragmatics

A <for-expression> provides a shorthand for a particular kind of <while­
expression> and serves the purpose of iterating over class instauces on wbich the
operation next is defined. By convention2, this operation bas one parameter state,
which keeps accounts of the progress of the iteration. At the start of each <for­
expression>, state is initialized to 'undejined' At each step of the iteration next is
called and delivers either an array of two elements ([v, s], where v is the value to be
used in the current step and s is the state to be used in the next step), or fails, to indi­
cate that the <for-expression> should terminate. Given this behavior of next one can
rewrite a <for-expression> of the form

for x iny do z od
as

gen : • y;
state : = undejined;
wbDe [x,state] : = gen.next(state) do z od;

where gen and state ar· assumed to be narnes not occurring elsewhere in the program.

9.2.7.c. Semanties

if {{e == POR td:<identifier> IN expr:<expression> DO b:<block> OD}}

then
var gen, v, sig, state;

if .- is_loc(ENV.binding(id)) then ERROR ft;
[gen, sig] : • eval(expr); ·
if sig --- N then return([gen, sig]) ft;

2) All next operations dellned on built-in classes bave this form. and a run-time error will result if a user­
dellned next operation does not conform to iL

Notes

9.2.7. For expressions

gen : = dereference(gen);
state : = a__undefined;

135

whUe [state, sig] : = eval_field_selection<Jetch', gen, 'next', [$late]) & sig = N
do

[v, sig] : = eval_field_selection<Jetch', state, 'retrieve', [a_integer(O)]);
if sig -== N then ERROR ft;

. STATE.nwdify(ENV.binding(id), v);
[state, sig] : = eval_jield_selection<Jetch', state, 'retrieve', (a_integer(I)]);
if sig -= N then ERROR ft;
[v, sig] : = eval(b);
if sig ,...., .. N then return([v, sig]) ft;

od;
return([a_undefined, N]);

ft;

.I) This semantic definition is equivalent to the textual rewriting of <for­
expression>s, as shown in the previous section, but it avoids explicit rewriting
because this is allen to the style of definition used bere.

9.2.7.d. Examples

I) dass interval(from, to, by)
begin fetch next;

proc next(state)
(var cur;

);

if state = undefined
tb en

cur := from
else

cur : == state + by
ft;
if (from < == to & cur < = to) I (from > to & cur > = to)
then

return([cur, cur])
else
f ~turn

fi

inlt: if (from < = to & by < 0) I (from > to & by > 0) I by == 0
then

freturn
fi

end interval;

{This is an example of a user-defined next operation. The argument state is
used to administer the progress of the iteration. lnitially, state has the value
undeftned. An example of the use of this class is given below. See also 10.6.}

136 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

2) for n in interva/(0, 10, 1) do put(n, '\n') od

{Prints the values 0 to 10 on consecutive lines.}

3) for c in 'abcd' do put(c, '\n') od

{Prints the characters 'd', 'b', 'c' and 'd' on consecutive lines. See also 10.4.}

9.2.8. Try expresslons

9.2.8.a. Syntax

<try-expression> :: == TRY { <expression> ',' } + [UNTIL <block>] YRT.

9.2.8.b. Pragmatks

A <try-expression> provides a facility · for eliminating the side-effects of the
evaluation of a failing expression. A partial...state_copy {8.3.3} is made before each
<expression> is evaluated. If the evaluation of the <expression> is successful, the
<block>, if any, is evaluated. If that evaluation is also successful, the <try­
expression> as a whole succeeds and all side-effects are made 'permanent' (see below).
If the evaluation of either the <expression> or the <block> fails, then the original
environment is restored (except for the local variables of the current procedure, which
are not restored to their previous values, (see below)) and the next <expression> is
evaluated. This process is repeated until success is achieved or the list of
<expression>s is exhausted. In the latter case, the original environment is restored
(again the values of local variables are excluded) and the <try-expression> fails.

The values of 1ocal variables of the procedure in which the <try-expression>
occurs are never restored and can hence be used to pass information from an attempt
that has failed to the next one. Since <try-cxpression>s can be nested dynamically,
the side-effects of an innermost <try-expression> may be undone by an enclosing
<try-expression>. In this sense, only side-effects of an outermost <try-expression>
are 'permanent'.

9.2.8.c. Semanties

if { { e -= TRY exprlist: { <expression> ', '} + u:[UNTIL <block>] YRT } }

then
var b, ENVI, expr, v, sig;
ENVI :== ENV;
for expr in exprlist
do ENV : == ENV .partial...state_copy; .

[v, sig] : == eval(expr);
casesig
of F: ENV : == ENVI,

FR: ENV: = ENVI; return([v, FR]),
NR:return([v, NR]),
N: if {{u == UNTIL b:<block> }}

then
[v, sig) : = eval(b);
case sig
of F: ENV: • ENVI,

FR: ENV: = ENVI; return([v, FR]),

Notes

esae
od;

9.2.8. Try expressions

NR; return([v, NR]),
N: return([v, N])

esac
else

retum([v, N])
fi

return([a_undefined, F])
fi;

137

1) In the above definition, it is essential that objects can be shared. Consider, for
instance, the first assignment ENVI : = ENV. Here, a reference to the value of
ENV (an environment) is assigned to ENVI, instead of copying the whole
environment and assigning that value to ENVl. This bas as consequence that,
for instance, all locations which occur in the environment are shared by ENVI
and ENV. Tbis is precisely what is needed for communicating modifications of
values in the environment to the evaluations of enclosing constrocts after suc­
cessful completion of the <try-expression>. The complementary situation (all
locations are copied except the locations of the local variables of the current
procedure) is realized by the partial.....state_copy operation.

2) The operation partial.....state_copy bas been defined in such a way that the loca­
tions associated with Iocal variables of the current procedure are shared by the.
original and copied environments. This achieves the effect that the values of
these local variables are never restored.

3) Evaluation of a <return-expression> {9.2.3} contained in a <try-expression>
leads to premature completion of the evaluation of that <try-expression>. For
a normal return ('return') the environment is not restored; for a failure return
(either an 'freturn' or a 'return' of a failing expression) the environment is
restored.

4) Side-effects on files { 10.9} are also recovered.

9.2.8.d. Examples

1) x:= g ;= 0;
try x : = g : = -1, x : = g : = I until positive(x) yrt

{ Assume that x is a local variabie and g is a global variable. After the evalua­
tion of x : g : = -I, the test faits and the previous vaiue of g (i.e. 0) is
restored. x, being a local variable. keeps its current value (i.e. -I). Next,
x : = g : = I is evaluated and the test succeeds. The evaluation of the <try·
expression> is complete and g keeps its value (i.e. I).}

2) if try index : = input_contains(search....key) yrt
then

process(index)
else

put('key not found')
fi

138 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

{Suppose that input_contains(search.Jcey) is a user-deftned procedure that reads
some input from a file and succeeds or fails depending on whether that input
contains the searçh.Jcey as literal substring. If this procedure succeeds then the
input is irrevocably consumed. However, if it fails then all read operations are
reversed and all other side-etfects are undone. The net effect of expressions of
the form 'if try . . . yrt tbera . . . ' is to probe without distorhing the program
state (apart from local modifications) if the probe fails.}

9.2.9. Scan expressions

9.2.9.a. Syntax

<scan-expression> :: = scAN <expression> FOR <bloclc> ROF.

9.2.9.b. Praglnaties

A <scan-expression> serves the purpose of introducing a new 'focus of activity'
which need not be mentioned explicitly during the evaluation of the associated
<block>. This is particularly useful in (but not restricted to) string scanning to avoid
having to mention the subject string for each scanning operation. First, the <expres­
sion> is evaluated. If the result is of type string, it is converled to type scan....string
{10.8}. The value obtained in this way is botind to the identüier subject in the current
environment, after saving the previous binding of subject. Next the <block> is
evaluated, and finally the previous value of subject is restored.

Note that the rules for identüier identüication {9.2.2} are in accordance with
the semantics of <scan-expression>s: identüiers which are not bound to some
DENOTABLE-VALUE {8.3.3} are interpreled as fields to be selected from the
current value of subject.

9.2.9.c. Semantics

if { { e == SCAN expr: <expression> FOR b: <block> ROP } }

then

ft;

var ENVI, v, sig;

[v, sig) : • eval(expr);
if sig -= N tbera return([v, sig]) ft;
v : = dereference(v);
if is....string(v)
tben

[v, sig] : = eval_call('scan....string', [v])
ft· '
' ENVI := ENV;

ENV : = ENV.name_copy;
ENV.new_ïnnerscope;
ENV.bind('subject', v);
[v, sig] : = eval(b);
ENV:= ENVl;
retum([v, sig])

9.2.9. Scan expressions

9.2.9.d. Examples

1) scan 'aardvark,able,baker,clerk,'
for

while x : = break(',')
do put(x, '\n'); move(I) od

rof

139

{break {10.8} assigns the string values 'aardvork' through 'c/erk' to the variabie
x. These values of x are printed on consecutive lines.}

2) name : = scan I
for

any(letter) 11 (span(letgit) I empty)
rof

{ Assumes that the value of I starts with an identifier-like string and assigns that
string to name.}

9.2.10. Assert expressions

9.2.10.a. Syntax

<assert-expression> :: = ASSERT <expression> .

9.2.10.b. Pragmatics

An <assert-expression> provides a means of specifying an assertion, wbich
should hold at the point where the assertion occurs. The <expression> part of the
<assert-expression> is evaluated. lt is an error if that <expression> cannot be
evaluated successfully.

9.2.10.c. Semantics

if { { e == ASSERT expr: <expression> } }
then

6;

var v, sig;

[v, sig] : = eva/(expr);
if sig --= N tben ERROR ft;
return([v, sig])

9.2.10.d. Examples

I) assert pi> 0

{The execution of the program is terminated if the condition pi > 0 fails.}

140 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

9.2.11. Parenthesized expresslons and bloeks

9.l.tl.a. Syntax

<parenthesized-expression> ::- '(' <block> ')'.

<block> :: ...
(<variable-declaration>l <constant-declaration>)* {[<expression>] '; '} • .

9.2.1l.b. Pragmaties

<parenthesized-expression>s can be used to indicate explicitly the desired
grouping in an expression or to introduce a new <block> during the evaluation of an
<expression>. A <block> introduces a new scope for the variables and constants
declared in it.

9.2.11.c. Semantlcs

The ~antics of a <parenthesized-expression> is:

if {{ e -- '(' b:<block> ')' }}
then

return(eval(b))
li;

The ~tics of a <block> is:

if { { e •= decllist: (<variable-declaration> I <constant-declaration>)*
exprlist: {[<expression>] ';'}* } }

then
var deel, expr, ENVI, v, varinitl, sig;

ENVI := ENV;
ENV : = ENV.name_eopy;
ENV.new_inner _scope;
varinitl : = varinit;
varinit : - " ;
for deel in deellist do [v, stg] : • eval(decl) od;
[v, sig] : = eval(varinit);
varinit : - varinit I;
ifsig N
then

ENV:- ENVI;
if sig • F then ERROR else return([v, stg]) li

li;
if exprlist.size - 0
then

ENV:- ENVI;
'return([a_umiefined, N])

else
var i;

for i in exprlist.index
do [v, sig) : • eval(exprlist[i]);

case sig

fi
ft•
'

Notes

9.2.11. Parenthesized expressions and blocles

of N: # do nothing #,

F: if i ,....,. exprlist.size - 1 then ERROR fi,
NR: FR:ENV := ENVl; retum([v, sig])

esac
oei;
ENV:= ENVl;
return([v, sig])

141

I) The evaluation of a <variable-declaration> or <constant-declaration> can
never fail, i.e. it always returns the signal value N.

2) Regarding the treatment of signals other than N, <variable-initialization>s are
treated differently when they occur in a <summer-program> {9.l.l}, in an
<identifier-or-call> related to a class creation procedure {9.2.2}. or in a
<block> (see above).

9.2.11.d. Examples

I) (var t; t : = a; a : = b; b : = t)
{A new local variabie t is declared. The above expression could also be used as
a subexpression. This is the case in

x : = (var t; t : = a; a : = b; b : == t)

which assigns the result of b : = t -in this case the old value of a- to x.}

2) if a > 0 then var x:= a • a; return((x-1) • (x+ 1)) 6

{Note that x is declared as a local variabie in the then-part of the <if­
expression>.}

9.2.12. Array expresslons

9.2.12.a. Syntax

<array-expression> :: •
ARRAY <size-and-default> [INIT <array-initialization> J
<array-initialization> . ,

<size-and-default> ::= '(' <expression> ',' <expression> ')'.

<array-initialization> :: = '[' { <expression> '.' }• ']' .

9.2.12.h. Pragmatic:s

Class array provides a storage facility that associates integer indices with arbi­
trary values. The definition of this class is given in the next chapter {10.5}. Here;
only <array-expression>s are defined. These introduce an abbreviated notation for
the creation of arrays (that is, instances of class array). The various fonns of
<array-expression>s can be rewritten as follows. An <array-expression> of the (fust)
form

array(e~o ea) init [io, ... , În-1]

142 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

is equivalent to

.p : = arr~(et. e2);
+ [0] : = io;

'i> [11 -1] : = În -1;

where .p is assumed to be a name, not occurring elsewbere in tbe program. An
<array-expression> of tbe (second) form

[io, . · . , În -d
is equivalent to

array(n, undefined) fnit [io, ... , i,.-J]

wbicb can be rewritten according to tbe previous rule.

Tbe first <expression> in tbe <size-and-default> deftnes tbe lengtb of tbe
array. Tbe second <expression> deftnes tbe default initialization value for tbe array
elements.

9.Z.ll.c. Semantics

Tbe semantics of an <array-expression> of tbe first form is:

if {{ e == ARRAY'(' exprl:<expression> ',' expr2:<expression> ')'
initexpr: [INIT <array-initilllization>] } }

then

ft;

V8l' def, sz, sig;

[sz, sig] : = eval(exprl);
if sig N then return([sz, sig]) ti; ·
sz : - dereference(sz);
[def, sig] : • eval(expr2);
if sig -= N then return([def, sig}) ti;
def: • dereference(def);
return(eval_a"~_jnit(sz, def, initexpr));

Tbe semantics of an <array-expression> of tbe second form is:

if {{ e ==• '{' exprlist:{ <expression> '/}• ']' }}
then

return(eval_arr~.Jnit(a_jnteger(exprlist.size), a._undefined, 'init' 11 e));
ti;

Tbe actual creation and initialization of instances of tbe class arr~ is performed by
eval~~_jnit, deftned below:

pree eval~~ _jnit(sz, def, initexpr)
(var ar, exprlist, i, v, v 1, sig;

[ar, sig] :- evalJQ/l('arr~', [sz, def]);
if sig -- N then return([ar, sig]) ti;
{ { initexpr -- INIT '[' exprlist: { <expression> ',' }* ']' } } ;
for i in exprlist.index
do [v,sig] : • eval(exprlist[i]);

Notes

od;

9.2.12. Array expressions

if sig -= N then return([v, sig]) 6;
v : = dereference(v);
[vl, sig] : = eva/_fieldJelection('fetch', ar, 'update', [a_integer(i), vJ);
if sig -= N then return([v1, sig]) ft;

return([ar, N])
);

143

1) The size of an array should begreater than or equal to zero.

2) An array denotation, i.e. an expression of the form of an <array-initialization>,
may also appear on the left hand side of an assigmnent operator and · then
denotes a multiple assigmnent {9.2.17}.

3) Array-e1ements are initialized by means of update opetations {9.2.14, 9.2.17 and
10.5}.

4) The format definition relles on the existence of a <class-declaration> for array
outside the kemel {10.5}. See Section 8.4 for a more extensive explanation of
this topic.

5) The above definition is intentionally general. Before the initialization loop is
performed, the number of initial values could be compared with the size of the
new array to ensure that its bounds would not be exceeded during initialization.
The call of eval_fieldJelection would never fail in those circurnstances. We
have opted bere for a more general formulation anticipating additions to the
language that allow initializations for other classes than array and table.

9.2.12.d. Examples

1) array(5, 0)

(Creates an instanee of the class array, with size 5 and all elements initialized
to 0.}

2) n :== 5;
i:= 30;
yellow : = 'YELLOW ';
array(3•n, 0) iDit [10, 20, i+5,yellow 11 'bird']

{Creates an instanee of class array of size 15. The elements withindices 0 to 3
are initialized to 10, 20, 35 and 'YELLOW bird' respectively. All other ele­
ments are initialized to 0.}

3) [3.5, 'sunshine', array(n, undefined)]

{ Creates an array of size 3, with elements initialized to the values 3.5, 'sunshine'
and array(n, undefined). In this way arbitrarily shaped multi-dimensional
arrays may be created.}

144 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

9.113. Table expresslons

9.1.13.a. Syatax

<table-expression> :: ==
TABLE <size-and-default> [INIT <table-initialization> 11
<table-initialization> .

<size-and-default> :: = '(' <expression> ',' <expression> ')'.

<table-initialization> :: = '[' { <tab Ie-element> ',' } • ']' .

<table-element> :: = { <expression> ':'} + ':' <expression> .

9.113.b. Pragmatics

Oass table provides an associative memory that maps keys of arbitrary type
onto values. The definition of this class is given in the next chapter {10.7}. Here,
only '<table-expression>s are defined, which introduce an abbreviated notation for the
creation of tables (that is, instances of class table). The various forms of <tab1e­
expression>s can be rewritten as follows. A <table-expression> of the (fust) form

table(e~o e2) init
[koo : : k0m

0
: io ,

kno:

is equivalent to

cp : = table(et. e2);
cp [kool : = : = cp [ko.nJ : = io;

where q. is assumed to be a name not occurring elsewhere in the program. A <table­
expression> of the (second) form

[koo : : k0m
0

: io ,

is equivalent to

cp: = table(s, undefined);
cp[koo] := := cp[kOmJ :=i&,

m

where s is equal to ~m;.
t=O

The fust <expression> in the <size-and-default> defines the estimated size of
the table; the total number of entties in the table may beoome larger than this esti­
mate. The second <expression> defines the default value to be returned when a value
is looked up which has not been previous1y entered in the table.

9.2.13. Table expressions

9.2.13.c. Semantics

The semantics of a <table-expression> of the first form is:

if {{ e == TABLE '(' exprl:<expression> ',' expr2:<expression> ')'
initexpr: [INIT <table-initialization>] } }

then

fi;

var def, sig, sz;

[sz, sig] : = eval(exprl);
if sig -= N then retum([sz, sig]) H;
sz : = dereference(sz);
[def, sig] : == eval(expr2);
if sig -= N then return([def, sig]) fi;
def: - dereference(def);
return(eval_table_init(sz, def, initexpr));

The semantics of a <table-expression> of the second form is:

if {{ e === '[' expr!ist:{<table-element> ','}• ')'}}
then

retum(eval_table_init(a_integer(exprlist.size), a_J.llldeftned, 'init' 11 e))
11;

The actual creation and initialization of tables is performed by eval_table_init:

proc eval_table_init(sz, def, initexpr)
(var tb, sig, v, expr, exprlist;

[tb, sig] : = eval_call('table', [sz, def]);
if sig -= N then return([tb, sig]) ft;
{ { initexpr ==== INIT '[' exprlist: { <table-element> ',' } * ']' }} ;
for expr in exprlist
do var ar, k, key, keylist, exprl, vl;

od;

{{ expr = keylist:(<expression> ':'} + ':' exprl:<expression> } };
ar : = array(keylist.size, undeftned);
for k in keylist.index
do [v, sig] : = eval(keylist[k]);

od;

if sig -= N then retum([v, sig]) ft;
ar[k] : == dereference(v);

[vl, sig] : = eval(exprl);
if sig -= N then retum([vl, sig]) ft;
vl : = dereference(vl);
for key in ar
do [v, sig} : = eval__field...selection(Jetch', tb, 'update', [key, vl});

if sig -= N then retum([v, sig}) ft;
od

retum([tb, N})
);

145

146 SEMI-FOR.MAL DEFINITIONOF THE SUMMER KERNEL

Notes

1) Table-elements are initialized by means of update operations {9.2.14, 9.2.17 and
10.7}.

2) The formal definition relies on the existenee of a <class-declaration> for table ·
outside the kemel {10.7}. See Section 8.4 fora more extensive explanation of
this topic;

9.1.13.d. Examples

I) table(300, undeftned)

{Creates a new instanee of class table, with estimated size 300 and default value
· undefined.}

2) table(i+SO, 'symbol-not-in-table')

{Creates a new instanee of class table, with as estimated size the value of the
expression i + 50 and as default value the string 'symbol-not-in-table1

.}

3) t :- tab/e(IOO, 0) init ['a':'b': 3, 'p':5]

{Assigns to t a new instanee of class table with estimated size 100 and default
value 0. It performs the initializations

t['a'] : • t['b'] :- 3;
t('p'] : ... 5.

The values of t('a'], t('p'] and t('z'] are now 3, 5, and 0 respectively.)

9.1.14. Field seleetion

9.2.14.a. Syntax

<primary> :: • <unit> (<subscript> I <select>)• .

<select> ::- 1
.' <identifier> [<actuals>] .

9.1.14.b. Pragmatics

Accessing a field of a class instanee is relerred to as field seleetion {9. 1.5}. We
will only describe the basic mechanism of field selection here. A complete description
is postponed until {9.2.17}.

The following items are requireld for a field selection:

L The aceesatype to distinguish an assignment ('store') to the field from any other
operation ('fetch').

2. The instanee on which the field selection is to be performed.

3. The field to be selected.

4. Optional actual parameters.

To carry out a field selection, the environment is switched to the environment con·
· tained in the left operand of the selection (i.e. the instanee obtained by evaluating the
<unit>). Depending on the access type, either the <fetch-associations> or the
<store-associations> of the corresponding <class-declaration> are searched for a
<field-identifier> equal to field. Dependin:g on the form of the association in which

9.2.14. Field selection 147

field occurs, the value of the field is either simply modilied and returned as value, or
the procedure associated with the field is called. In the latter case the value returned
by the procedure call is the result of the field selection. Finally, the original environ­
ment is restored.

9.2.14.c. Semantics

The semantics of a <unit> foliowed by a <select> is:

if {{ e == exprl:<unit> '.' fie/d:<identifier> act: [<actuals>]}}
then

var actual_vals, vl, sig;

[vl, sig] : = eval(exprl);
if sig --= N theo return([vl, sig]) ti.;
vl : = dereference(vl);
ü { { actua/s == '(' exprlist: { <expression> ', '}* ')' } }
theo

var i, exprlist, v;

actual_vals : = array(exprlist.size, undefined);
for i in exprlist.index
do [v, sig] : = eval(exprlist[i]);

od
else

if sig -= N theo return([v, sig)) ti.;
actual_vals[i] : = dereference(v)

actual_vals : == array(O, undefined)
ti.;
return (eva!_field.....selection (Jetch ', v 1, field, actual_vals)); .

fi;

The actual field selection is performed by eval_field.....selection described below.

proe eval_jield.....selection(access_jype, instance, field, actuals)
(var ftist, slist, list, v, sig,f, ENVI,p, a;

ü is_basic_instance(instance)
theo

return (instance.operation (field, actuals))
fi;
if"'"" is_composite..Jnstance(instance) theo ERROR fi;
{ { instance.class_decl.text ==

}};

CLASS <identifier> <formals>
BEGIN FETCH jlist: { <association> ', '} + ';'

STORE slist: { <association> ', '} + ';'
(<Variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration>
)*
(INIT ':' <block>]

END <identifier> ';'

ENVI := ENV;
ENV : = instance.env;

148 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

list : = if access...Jype = 'fetch' tbenflist else slist 6;
fora in list
do if {{ a == f: <field-identifter> }} & string.....equal(field, j)

tben

);

if isJoc(ENV.binding(j))
tben

if access...Jype = 'fetch'
tben

if actuals.size -= 0 tben ERROR 6;
v : = derejerence(ENV.binding(j));
ENV:= ENVI;
return([v, N])

else

6

lf actuals.size -• I tben ERROR 6;
v : == actuals[O];
STATE.modify(ENV.binding(f), v);
ENV:= ENVI;
return([v, N])

else

6;

if access...Jype -= 'fetch'
tben

[v, sig] : = eval_call(f, actuals);
ENV:= ENVI;
return([v, sig])

else
ERROR

6

elif {{a •= fi<tield-identifter> ':' p:<identifter> }} &
string_equal(field, f)

tben

8

[v, sig] : = evai_call(p, actuals);
ENV:= ENVI;
return([v, sig])

od;
ERROR

The utility procedure has_.field succeeds or fails depending on whether a given field
selection can or cannot be performed. lt is used for operator identiftcation {9.2.16
and 9.2.17}.

proe has_.field(access...Jype, instance,field)
(Y8l' flist, slist, list, f, p, a;

if isJasic.Jnstance(instance)
tben

return(instance.has(jield))
8;

Notes

9.2.14. Field selection

if,..., is_composite...Jnstance(instance) thenfreturn fi.;
{ { instance.class_decl.text ==

}};

CLASS <identifi.er> <formals>
BEGIN FETCH ftist: { <association> ', '} + ';'

STORE slist: { <association> ', '} + ';'
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration>
)*
[INIT ':' <block>]

END <identifi.er> ';'

list : = if access......type "" 'fetch' thenftist else slist fi;
fora in list
do if { { a == f: <lield-identifi.er> [':' <identifi.er>] } } &

string_equal(field, j)
then

return
fi.

od;
freturn

);

149

1) In the formal defi.nition it is assumed that all <expressîon>s are fully
parenthesized. This implies that repeated field selections of the form

e.ft·fz·h···

have been replaced by

(· · · ((e · ft) · fz) · h · · ·)
Henee, the formal definition only has to cover the case of a single field selec­
tion.

2) The class_decl.text part of each instanee under consideration is requîred to
have an empty <subclass-declaration>, sînee this has been removed by
expand_super_class {9.1.5}.

9.2.14.d. Examples

1) n := 5;
s : = stack(1 * n)

{ Assîgns a new instanee of class stack with actual parameter 35 to variabie s.
A declaration for class stack is given as an example in {9.1.5}.}

s.push(4)

{Next, the integer 4 is pusbed onto that stack by performîng the field selection
push with actual parameter 4.}

150 SEMI.FORMAL DEFINITION OF THE SUMMER KERNEL

2) x:== s.pop

{Similar to the above. but now an element is popped from the stack by per­
forming the field selection pop.}

9.2.15. Subscription

.. 9.2.15.a. Syntax

<primary> :: == <unit> (<subscript> I <select>)• .

<Subscript> : : == '[' <expression> '}' .

9.2.15.b. Plagmalies

Subscription is an abbreviated notation for selection of the fields retrieve and
update respectively. These fields are. amongst others, detfued for the classes array
{10.5}, bits {10.10}, string (retrieve only) {10.4} and table {10.7}, but each class which
defi.nes these operations can use the subscript notation. The operation update is used
when subscription occurs on the left hand side of an assignment operator and is
described in {9.2.17}; The operation retrieve is used in all other cases and is described
bere. ·

Since subscription is reduced to field selection, its semantics is defi.ned by
defi.ning the reduction from

el[e2]
to

el.retrieve(e2).

9.:us.c. Semanties

Notes

if {{ e- exprl:<unit> '[' expr2:<expression> ']'}}
theo

8;

var vl, v2, sig;

[vl, sig] : • eval(exprl);
if sig -- N theo retum([vl, sig]) 8;
vl : == dereference(vl);
[v2, sig] : == eval(expr2);
if sig -== N theo return([v2, sig]) 8;
v2 :- dereference(v2);
return(eval_Jield_selection('fetch', v1, 'retrieve', [112]))

l) In the format defi.nition it is assumed that all <expression>s are fully
parenthesized. This implies that repeated subscriptions of the form

e[e 1] (e2) (e3) · · ·

have been replaced by

(· · · ((e[e,])[e2])[e3] · · •)

9.2.15. ~ubscription 151

9.2.15.d. Examples

I) a : = array(IO, 7);

{Assigns to a an instanee of class array, containing 10 elements which are all
initialized to 7.}

x:= a[5]

{Evaluates, in the above context, the expression x : = a.retrieve(5), which
assigns the integer 7 to variabie x.}

9.2.16. Monadic expressions

9.2.16.a. Syntax

<monadic-expression> :: = (<monadic-operator>)* <primary> .

<monadic-operator> :: = 1
-

1 I 1 -
1 I <operator-symbol> .

9.2.16.b. Pragmatics

All monadic operators have the same priority, which is higher than the priority
of dyadic operators. In the formal definition it is assumed that all <monadic­
expression>s are fully parenthesized hence only <monadic-expression>s containing
just one <monadic-operator> will be described.

The evaluation of a <monadic-expression> proceeds in the following steps:

I. Evaluate the primary. Unless the <monadic-operator> is ',...,', the evaluation
of the <monadic-expression> fails if the evaluation of the primary fails.

2. If the <monadic-operator> is not (' -'), turn success into failure and vice versa.

3. Otherwise, if a field with the name of the <monadic-operator> is defined on
the value obtained in step I, then performa field selection of that field.

4. Otherwise, there must be a global <operator-declaration> for <monadic­
operator>, i.e. an <operator-declaration> immediately contained in the
<summer-program>. In this case perform a call to the procedure declared by
that <operator-declaration>.

9.2.16.c. Semantics

if { { e == mop: <monadic-ope,ator> expr: <primary> } }
then

var v, sig;

[v, sig] : = eval(expr);
if string_equal(mop, 1

""
1

)

then
case sig
of N: return([a_undejined, F]),

F: return([a_undejined, N]),
FR: NR: return([v, sig])

esac
elif sig -= N
then

152 SEMI-FORMAL DEFINmON OF THE SUMMER KERNEL

ft·
'

retum([v, sig])
ft· ,
v : == dereference(v);
if has_field\.fetch', v, mop)
then

return(eval_field....3election\.{etch', v, mop, []))
elif ENV .has_binding(mop) & is_pr()c(ENV.binding(mop))
then

return(eval_call(mop, [v]))
else

ERROR
ft

9.Z.16.d. Examples

1) -x

2) - positive(x)

3)' - ifa > bthenx + 1 elsex- 1 ft
I
9.%.17. Dyadic expressions

9.l.17.a. Syntax

<dyadic-expression> ::-
<monadic-expression> (<dyadic-operator> <monadic-expression>)• .

<dyadic-operator> :: =
'+' I'-' I '•' I''' I'%' 1'11' I'<' I'<=' I'>'. I'>=' I
'=' I,_,..., I':=' I'&' 1'1' I <operator-symbol>.

9.Z.17.b. Pragmatks

The priorities of <monadic-operator>s and <dyadic-operator>s, are in decreas-
ing order:

All monadic operators 1
11 2
• I% 3
+ - 4
< <= > >--- s
User defined operators 6
:- 7
& 8
I 9

In the formal definition it · is assum~ that all <dyadic-expressión>s are fully
parenthesized in order to establish the relative priorities of the <dyadic-operator>s.
In the sequei. only <dyadic-expression>s containing just one <dyadic-operator> will
be described.

The evaluation of a <dyadic-expression> proceeds in the following steps:

9.2.17. Dyadic expressions 153

1. lf the <dyadic-operator> is not equal to ': =' (assignment), goto step 3, other­
wise evaluate the right-hand operand. If it evaluates to a location, use the con­
tents of that location as value.

2. The <dyadic-operator> is ': ='. We distinguish four cases depending on the
form of the left-hand operand:

2a. Field selection. The left operand consists of a <unit> foliowed by a
<select>. Evaluate the <unit> and perform a 'storing' field selection
{9.2.14} on the value obtained in this way, using the given field name
and with the value obtained in step 1 as actual parameter. The value of
this field selection is the result of the evaluation of the <dyadic­
expression>.

2b. Subscription. The left operand consists of a <unit> followed by a <sub­
script>. Evaluate the <unit> and <subscript>. Performa field selection
{9.2.14} on the value of the <Unit>, using the field name update, the
value of the <subscript>, and the va1ue obtained in step I as actual
parameters. The value of this field selection is the result of the evalua-
tion of the <dyadic-expression>. ·

2c. Multiple assignment. The left operand consists of an <array­
initialization>. The expressions e; in the <array-initialization> are
evaluated from left to right The value of each e; should be a location.
For each e; the result of evaluating the expression V[i] is placed in the
cell corresponding to location e;, where V is the value obtained in step 1.
The value of the last expression in the <array-initialization> is the result
of the evaluation of the <dyadic-expression>.

2d. Simple assignment. Neither of the above cases applies. The left operand
of the assignment is evaluated. The resulting value should be a location.
The value obtained in step 1 is placed in the cell associated with that
location and that va1ue is a1so the result of the evaluation of the
<dyadic-expression>.

3. The <dyadic-operator> is not ': =' . Evaluate the left. operand. lf it faits and
the <dyadic-operator> is not 'I' (Boolean or), the evaluation of the <dyadic­
expression> as a whole fails. Evaluate the right operand: If it fails, the evalua­
tion of the <dyadic-expression> faits. If the <dyadic-operator> is 'I' (Boolean
or) or '&' (Boolean and), the value of the right operand beoomes the value of
the whole <dyadic-expression:>: whose evaluation is then complete. Otherwise,
the following cases exist:

3a. The value of the left operand is an instanee of some class, say C, and a
field with the same name as the <dyadic-operator> is defined in the
<class-declaration> for C. Perform a selection of that field; the result
of this field selection then becomes the result of the evaluation of the
<dyadic-expression>.

3b. There exists an <operator-declaration> for the <dyadic-operator>. Per­
form a procedure ca1l to the procedure dec1ared in that <operator­
declaration>; the result of this procedure call then beoomes the result of
the evaluation of the <dyadic-expression>.

154 SEMI-PORMAL DEFINITION OF THE SUMMER KERNEL

3c. The <dyadic-operator> is • ==' or '-= '. Perform an (in)equality test on
the values of the left and right operands. Depending on the outcome of
this test, evaluation of the <dyadic-expression> either fails or delivers the
value of the right operand.

9.2.17.c. Semantics

if { { e == expr I: <monadic-expression>
dop: <dyadic-operator> expr2: <monadic-expression> } }

tben
var left, right, sig;

if {{dop = ':='}}
tben

var exprlist, field, sub, u, vu, vs;

[right, sig] : = eval(expr2);
if sig N then return([right, sig]) ft;
right : = dereference(right);
if {{ expr I = u: <unit> '. 'field: <identilier> }}
then # Case 2a. (field selection) #

[vu, sig] : • eval(u);
if sig -- N tben return([vu, sig]) ft;
vu : • dereference(vu);
return (eval_fieltl_.selection ('store', vu, field, [right]));

elif {{ expri •• u:<unit> '{' sub:<expression> ')' } }
tben # Case 2b. (subscription) #

(vu, sig] : • eval(u);
if sig N then return([vu, sig]) ft;
vu : • dereference(vu);
[vs, sig] : = eval(sub);
if sig,,. N then return([vs, sig]) ft;
vs : = dereference(vs);
return(eval_fieldJelection(Jetch', vu, 'updote', [vs, right]))

elif {{ expri = '[' exprlist:{ <expression> ', '} + ']' }}
tben # Case 2c. (multiple assigl)ment) #

var i, vi, v;

for i in exprlist.index
do [vi, sig] : • eval(exprlist[i]);

od;

if sig -- N then retum([vi, sig]) ft;
lf- is.Joc(vi) then ERROR fi;
[v, sig]: •
eval-fieldJelection(Jetch', right, 'retrieve', [a_jnteger(i)]); ~
if sig - N then retum([v, sig]) fi;
STATE.modify(vi, v);

return([vi, N])
else # Case 2d. (simple assignment) #

[/'!ft, sig] : • eval(exprl);
if sig- N then return([left, sig]) fi;
lf --is_loc(left) then ERROR ft;

fi•
'

Notes

.fi

9.2.17. Dyadic expressions

ST A. TE.modify(left, right);
return([right, N])

else # Case 3. operator unequal ': =' #

fi

[left, sig] : = eval(exprl);
if string_equal(dop, 'I')
tben

if sig -= F then return([left, sigl) fi
el se

if sig -= N then return([left, sig]) fi
fi;
[right, sig] : = eval(expr2);
if sig --= NI string_equal(dop, 'I') I string_equal(dop, '&')
then

return([right, sig])
ti;
left : = dereference(left);
right : = dereference(right);
if has_jield(Jetch', left, dop)
then # Case 3a. #

return(eval_jield.Jelection(Jetch', left, dop, [right]))
elif ENV.has_binding(dop) & is_proc(ENV.binding(dop))
then # Case 3b. #

return(eval_call(dop, [left, right]))
elif dop ... '=' 1 dop = '-='
then # Case 3c. #

sig : = if equal(left, right) then N else F fi;
ifdop = '-='
then

sig : = if sig = N then F else N fi
fi;
return([right, sig])

else
ERROR

ti

I) lt is not possible toredefine tbe operators '1', '&', and ': ='.-

155

2) It is not even possible to define operators witb a similar elfeet to 'I' and '&',
since these operators do not evaluate tbeir arguments before tbey are applied.
This form of parameter transmission is not available in SUMMER. For similar
reasons, it is not possible to define 'assignment-like' operators.

3) The operators '=' and '-=' can be redetined. The order of steps 3b and 3c
above ensures this.

156 SEMI-FORMAL DEFINITION OF THE SUMMER KERNEL

9.2.17.d. Examples

1) x:= 10;
y:=x+l;

{ Assigns 11 to y.}

2) p : • 3; q : == 23; r : = 29;
sl : • 'A Space Odyssey';
s2 := string(p • q • r) 11 sl;

{ Assigns the value '2001 A Space Odyssey' to s2.}

3) [x,y,z]:=[1,2,3]

{Is equivalent to: x : = l; y : = 2; z : = 3}

4) [x,y]:=[y,x]

{Is equivalent to: tmp : = x; x : = y; y : = tmp}

5) p &q

{Succeeds if both p and q succeed,. and faits otherwise.}

6) p&ifa > bthenx > aelsex > bfi

9.2.18. Constant expresslons

9.2.18.a. Syntax

<constant-expression> :: =
<simple-constant-expression>
(<constant-operator> <constant-expression>)• .

<simple-constant-expression> :: =
<constant> I <identifier> j'(' <constant-expression> ')'I
'-' <simple-constant-expression> .

<constant-operator>::= '+'1'-'1'•' l.-1'1'%' I '11'.

9.2.18.b. Pragmatk:s

<constant-expression>s occur in <case-entry>s {9.2.5} and <constant­
initialization>s {9.1.3} and consist solely of <COnstant>s, <identifier>s whicb have
been deèlared in a <constant-deçlaration>, and a limited set of operators.
<constant-expression>s are evaluated by eva/. The following procedure
require_constant_.expression ensures that all <identifier>s occurring in a <constant­
expression> have indeed been declared in a <constant-declaration>.

9.2.18. Constant expressions

9.2..18.e. Semantics

proc require_constant_expression (e)
(var sel, se2, name, tail, ce, c;

);

{ { e == se I: <simple--constant-expression>
tail: (<constant-operator> <constant-expression>)*

}};
if { { set == <constant> } }
then

#ok#
elif { { se I == name: <identifter> }}
then

if -is__integer(ENV.bindi'ng(name)) & -is_;string(ENV.binding(name))
then

ERROR
fi

elif {(se I == 1
-

1 se2: <simple-constant-expression> } }
then

require_constant_expression (se2)
elif {{ sei = 1

(
1 ce:<constant-expression> 1

}'}}

then
require_constant_expression (ce)

li;
for c in tail
do ({ c = <constant-operator> ce: <constant-expression> } } ;

require_constant_expression (ce)
od

9.2.18.d. Examples

I) pi

(Assume that the <constant-declaration>

oonstpi:= 3.14;

has occurred previously.}

2) 2. pi

3)" 7 + (2 *pi)

9.3. Miseellaneons fundions used in the fonnal definitlon

157

This sectien is devoted to some functions which are used in the lormal
definition. but have not been described in preceding sections.

9.3.1. 'lhe fundion dereference

SUMMER allows very complex lelt hand sides of assignments. For example,

1)8 SEMI-FORMAL DEFINffiON OF THE SUMMER KERNEL

ifa>btben
if c > dtben x elsey ft

else
z

ft :• 3

assigns the value 3 to either x, y or z. To handle such general cases, evaluation
always delivers values which are not dereferenced (see below). lf a variabie is
evaluated, the result is the location bound to that variabie and not the contents of
that location. Locations are not STORABLE-VALUEs however, and as a conse­
quence it is necessary to dereference the result of an evaluation before certain opera­
tions (use as actual parameter, right hand side of assignment, or operand in expres­
sion) can be performed. Dereferencing converts a location to the value it contains.

· This is precisely what is done by the procedure defined below.

proe dereference(val)
(if is.Joc(va/)

tben
return(STATE.contents(val))

else
return(va/)

ft
);

~.3.2. Tbe fundion equal

The procedure equal performs the basic equality operation between values and
is described below:

proe equal(a, b)
(if is.Jnteger(a) & is_jnteger(b)

tben

);

return(a.intva/ • b.intval)
elif is......string(a) & is......string(b)
tben

return(string.....equal(a.stringval, b.stringval))
elif is_composite_jnstance(a) & is_comp()Site_jnstance(b) &

string.....equal(a.class_decl.name, b.class_decl.name)
tben

return(a.same_as(b))
else

freturn
ft

9.3~. The fundions substring and string_equal

Two auxiliary operations on strings are used in the definition. The procedure
substring extracts a substring of given length which begins at a given position from a
given string. The procedure stringJqual succeeds if two strings have the same size
and contain the same characters. The definition of these procedures is omitted.

159

10. THE SUMMER LIBRARY

10.1. Introduetion

This chapter describes the SUMMER library of standard classes. The library is
made available to each SUMMER program automatically, i.e. the standard classes can
be used without any definitions or declarations being required on the part of the pro­
grammer.

The types of forma! parameters and return values of procedures and operators
are indicated explicitly, in a PASCAL-like style.1 Por example,

proc move(n : integer) : string

denotes a procedure with integer parameter n and a return value of type string. If
more than one type is allowed, the names of the legal types are joined with the infix
-or- as exemplified by integer-or-real-or-string. A value of arbitrary type is denoted by
arbtype.

If during the execution of a program, some procedure or operator described in ·
this chapter is called with actual parameter values of a type that is not equal to one
of the specified types, then an error is signalled. In the sequel the phrase 'an error is
signalled' will be understood to mean that a semantic error is detected, that the execu­
tion of the program is terminated and that the user is notified of this fact . by an
appropriate error message.

The reader should be aware that this chapter contains an informal definition of
the standard classes; this implies that no forma! definitions in metalanguage will be
given.

Each of the following paragraphs describes a separate class definition.

10.2. aass integer

Class integer defines integer values and their associated operations. The global
organization of this class is:

class integer(arg : integer-or-real-or-string)
begin fetch +, -, *• I,%,<,<=,=,-=,=>,>;

var intval;

op + (n) (...);

op> (n)(...);

init: intval : = convert.Jo_integer(arg);

end integer;

When an instanee of class integer is created, the actual value of arg may be one of
several types. The following conversion rules apply:

I) This notation is used in this ebaplet only, and is not available in SUMMER itself.

160

Integer:

Real:

String:

THE SUMMER LIBRARY

No conversion is required.

The real value arg is rounded to an integer, i.e. to the valÓ.e
sign(arg) X entier(abs(arg) + 0.5).

H the string arg bas the form

[' +' I '- '1 <integer-constant>

then it can be converted to an integer. The creation of this instanee of
class integer fails if arg does not ~ave this fonn.

From now on we assume that the result of the above conversion bas been assigned to
the instanee variabie intval.

As described in Section 9.2.1, a special denotation (i.e. <integer-constant>s)
'exists for instances of class integer. For example, integer('37') may be a1so be written
as '37'.

The operations on integers are now described in more detail.

Opérator: + (n : integer-or-real) : integer-or-real
(n : integer-or-real) : integer-or-real

• (n : integer-or-real) : integer-or-real
I (n : integer-or-real) : real

Action: Performs the arithmetic operation intval $ n , where $ is one of the
.above arithmetic operators. If the type of n is integer, the (integer) value
obtained by the arithmetic operation is returned. If the type of n is real,
the value of real(intval) $ n is returned as a (real) value. Por division
(' /'), n is always converted to real.

Examples: 2 + 3
2 + 3.5
2-3.5 '
integer(2.8) + 2 .
8/5

Operator: % (n: integer): integer

{value: 5}
{ value: 5.5}
{value: 1.5}
{value: 5}
{ value: 1.6}

Action: The (integer) value obtained by integer division of intval by n is returned
as value. The result is positive if the values of intval and n are either both
positive or both negative; the result is negative otherwise.

Examples: 7 % 2 { value: 3}
-7% 2 {value: -3}
7% -2 {value: -3}
-7% -2 {value: 3}

10.2. Class integer

Operator: < (n : integer-or-real) : integer-or-real
< = (n : integer-or-real) : integer-or-real
== (n : integer-or-real) : integer-or-real
-= (n : integer-or-real) : integer-or-real
> = (n : integer-or-real) : integer-or-real
> (n : integer-or-real) : integer-or-real

161

Action: Performs the arithmetic comparison intval €9 n , where €9 is one of the
above operators. If the type of n is real, the comparison real (intval) €9 n
is performed. If the comparison succeeds, the (unconverted) value of n is
retumed as the value of the operation. Otherwise the operation fails. The
correspondence between these operators and their mathematical counter­
parts is as follows:

Operation Corresponds to

Examples: 2 < 3
3<2
3 < 4.5
3<1<5
3<4<5

10.3. aass real

m <n
m <• n
m=n
m-= n
m>• n
m>n

m <n
m..,;;; n
m = n
m :;i= n
m;;::. n
m >n

{value: 3}
{fails}
{value: 4.5}
{fails}
{value: 5}

Class real defines fioating point numbers and their associated operations. The
global organization of this class is:

dass real(arg : integer-or-real-or-string)
beginfetdl +, -, •, I,<, <•, =, -=, >, >=;

var rea/val;

op + (r) (...);

op > = (r) (...);
init: rea/val : = convert_to_real(arg);

end real;

When an instanee of real is created, the actual value of arg may be one of several
types. The following conversion rules apply to values of these types:

Integer: The integer value arg is converted to the corresponding real number.

Real: No conversion is required.

162 THE SUMMER LIBRARY

String: If the string arg bas the form of a <real-constant>, then it can he con­
verted to a real value. Otherwise, the creation of this instanee of class real
faits.

From now on we assume that the result of the above conversion bas been assigned to
the instanee variabie rea/val.

As described inSection 9.2.1, a~ denotation (i.e. <real-constant>s) exists
for instances of class real.

The operations on reals are now described in more detail.

Operator: + (r: real-or-integer): real
(r: real-or-integer) : real

• (r: real-or-integer) : real
I (r: real-or-integer) : real

Action: Performs the operation real $ r, where $ is one of the above arithmetic
operators. lf the type of r is integer then r is first converted to real before
the operation is performed.

Examples: 2.0 + 3.0
2.5 + 3

Operator: < (r: real-or-integer): real-or-integer
< • (r : real-or-integer) : real-or-integer
• (r : real-or-integer) : real-or-integer
- (r : real-or-integer) : real-or-integer
> (r :real-or-integer) : real-or-integer
> • (r : real-or-integer) : real-or-integer

{value: 5.0}
{value: 5.5}

Action: Performs the arithmeûc comparison rea/val @ r, wliere @ is one of the
above operators. If the type of r is integer, r is fitst converted to real
before the comparison is performed. If the comparison succeeds, the
operation returns the (unconverted) value of r as result. Otherwise, the
operation faits. The correspondence between these operators and their
mathemaûcal counterpart$ is as follows:

Operaûon Corresponds to

p<q
p <• q
p-q
p-- q
p>- q
p>q

p <q
p <q
p = q
p =I= q
p ';Ir. q
p > q

{This correspondence is only approximate, since it depends on the preci­
sion of the ftoaûng point representation used to imptement reals.}

Examples: 2.0 < 3.0
2.5 < 2.0
2.5 < 3

10.4. aassstring

10.3. aass real

{value: 3.0}
{fails}
{value: 3}

163

Class string provides character strings and their associated operations. The glo­
bal organization of this class is:

class string(arg : integer-or-real-or-string)
begin fetch center, index, left, next, rep/, rep/ace,

retrieve, reverse, right, size, suhstr,
<, <•, -, ,...".,., >•, >, 11;

var stringval;

proc center(n, s) (...);

op 11 (s)(· · ·);

init: stringval:- convert_to_array_of_char(arg);

end string;

When an instanee of class string is created, the actual value of arg may be one
of several types. The following conversion rules apply: '

Integer: The result of converting the integer value of arg to a string is assigned to ,
stringval. The conversion is performed in such a way that the equality
arg = integer(stringval) holds.

Real: The result of converting the real value of arg to a string is assigned to
stringval. The conversion is performed in such a way that the equality
arg = real(stringval) holds.

String: No conversion is required.

As described in Section 9.2.1, a special denotation (i.e. <string-constant>s)
exists for instances of class string.

Although character is not an available data type in SUMMER, we will, for rea­
sons of convenience, consider strings to be equivalent to arrays of eharacters. Charac­
ters are defined to be equivalent to strings of length one. In this context, a phrase
like •some character in string S' means •some substring of S of length one'. The
string 'abc', for example, is equivalent to an array of length three, consisting of the
cbaracters •a•, •b' and •c'.

The operations on strings are now described in detail.

Proc: center(n : integer, s : string) : string

Action: Returns a new instanee of class string obtained by eentering stringval in a
string of length n. The remainder of that string is tilled with replications
of s, starting at both the leftand right ends. Coming from the left end, s
is truncated on the right, if necessary. Coming from the right end, s is
truncated on the left, if necessary. If stringval cannot be centered exactly,
it is placed one position left of the center. n should be non-negative.

164 THE SUMMER LIBRARY

Examples: ".center(O, '.')
".center(5, '.')
'a'.center(O, '. ')
'atcenter(l, '. ')
'a'.center(5, '. ')

· 'a'.center(4, '. ')
'a'.center(6, '. ')
'#'.center(5, 'abcd')
'ab'.center(5, '. ')

Proc: index () : interval

{value: "}
{value: ' '}
{value: "}
{value: 'a'}
{value: ' . . a. .'}
{ value: '.a . . '}
{value: '. a. '}
{value: 'ab#cd'}
{ value: '.ab . . '}

Action: Delivers the set of all legal indices in this string, i.e. interva/(0,
self.size-1, I) {10.6}.

Examples: for kIn 'grass'.index do put(k, '\n') od

{Prints the integers 0, I, 2, 3 and 4.}

Proc: left(n : integer, s : string) : string

Action: Returns a new instanee of class string obtained by positioning stringval at
the,left of a string of length n. The remairider of that string is tilled with
replications of s, starting at the right. The last replication of s is truncated
on the left, if necessary. stringval is truncated on the right if its size is
greater than n. n should be non-negative.

Examples: '' .left(O, '. ')
".left(5, '. ')
'a'.left(O, '. ')
'a'.left(l, '. ')
'a'.left(5, '.')
'a'.left(5, '. ')
'# '.left(3, 'abc')
'ab'.left(5, '. ')
'ab'.left(5, '. ')

Proc: next(state: undejined-or-integer) : arrt91

{value: "}
{value: ' '}
{value: "}
{value: 'a'}
{value: 'a'}
{ value: 'a. . '} ·
{value: '#he'}
{ value: 'ab . .. '}
{value: 'ab. '}

Action: This procedure produces the consecutive characters of stringval as strings
of size one. This procedure is most often used in <for-expression>s
{9.2.7} that iterate over all characters in a string. Calls to this procedure
are generated automatically in <for-expression>s, and usually one need
not be aware of the existence of this procedure. next proceeds as follows.
H state bas the value undefined, then fust set state to zero. Then, if
state < self.size, the array [self.retrieve(state), state + I] is returned,
otherwise next fails.

Examples: for c In 'lawn' do put(c, '\n') oei

{Prints the ebatacters '/', 'ti, 'w' and 'n' on consecutive lines. Note that
this for-expression is equivalent to:

10.4. Class string

gen : == 'lawn';
state : = undejined;
while [c, state] : • gen.next(state)
do put(c, 'n') od;

where gen and state are bidden local variables.}

Proc: repl(n : integer) : string

165

Action: Returns a new instanee of class string obtained by concatenating n copies
of strlngval. n shou1d be non-negative.

Examples: ".rep/(2)
".rep/(0)
'a'.repl(O)
'a'.rep/(1)
'a'.rep/(4)
'ab'.repl(O)
'ab'.rep/(1)
'ab'.rep/(4)

Proc: replace(sl, s2 : string) : string

{value: "}
{value: "}
{value: "}
{value: 'a'}
{value: 'aaaa'}
{value: "}
{value: 'ab'}
{value: 'abababab'}

Action: . Returns a new instanee of class string obtained by replacing in stringval all
characters that occur in sI by the corresponding character in s2. If s2 is
shorter than si, the characters occurring in the tail of s2 are deleted from
stringval. If s 1 contains the same character more than once, the value
corresponding to the right-most occurrenee is used.

Examples: 'abcba'.replace('a', '•')
'abcba'.replace('ac', '**')
'abcba'.replace('aa', '•- ')
'abcba'.replace('ax', '•- ')
'abcba'.replace('xy', '* ')
'abcba'.replace('a', ")
'abcba'.rep/ace('b', ")
'abcba'.replace(", ")
".replace(", ")

Proc: retrieve(n : integer) : string

{value: '•bcb•'}
{value: '•b*b•'}
{value: '-bcb- '}
{value: '•bcb•'}
{value: 'abcba'}
{value: 'bcb'}
{value: 'aca'}
(value: 'abcba'}
(value: "}

Action: Returns a new instanee of class string of size one, which consists of the n­
th character in strlngval. The condition 0 ..;;;; n < self.size should hold.

Examples: 'apocalypse nQw'[6] {value: y'}

Proc: reverse() : string

Action: Let stringval consist of the characters c 0 , ••• , en -I· The result of reverse
is a new instanee of class string obtained by concatenating the characters
Cn-1, • .• , Co (in this Order).

166 THE SUMMER LillRARY

Examples: ".reverse
'a'.reverse
'wolf'.reverse
'rever'.reverse

Proc: right(n : integer, s : string) : string

{value: "}
{value: 'a'}
{value: 1fow'}
{value: 'rever'}

Action: Returns a new instanee of class string obtained by positioning stringval at
the right of a string of length n. The remaiDder of that string is filled with
replications of s, starting at the left The last replication of s is truncated
on the right, if necessary. stringval is truncated on the left if its size is
greater than n. n must be non-negative.

Examples: ".right(O, '. ')
".right(5, '. ')
'ab'.right(O, '. ')
'ab'.right(l, '. ')

· Proc:

'ab' .right(5, '. ')
'ab'.right(5, '. ')
'#',right(5, 'abcdef')

size () : integer

{value: "}
{ value: ''}
{value: "}
{value: 'b'}
{value: ' ... ab'}
{value: ' .. ab'}
{value: 'abcde#'}

Action: Returns the number of characters in stringva/.

Examples: 'andromeda' .size {value: 9}
".size {value: 0}

Proc: subatr(offset, length : integer) :string

Action: Returns a new instanee of class string obtained by taking a substring from
stringval. lf /ength = 0, the empty string is returned: Otherwise, let N be
the number of characters in stringval and let M be equal to
min(N - I, offset + length - 1). Then a string consisting of the ebar­
aeters withindices offset, offset+ I, ... , offset +M is retumed. The
conditions 0 <offset < N and length ;;a. 0 should hold.

Examples: 'abcd' .substr(O, 2)
'abcd'.substr(l, 3)
'abcd'.substr(2, 7)

Operator: < (s : string) : string
< - (s : string) : string

(s: string) :string
-- (s: string): string
> • (s :.string) : string
> (s : string) : string

{value: 'ab'}
{value: 'bed'}
{value: 'cd'}

Action: Let ascii(c) be a lunetion that maps a character on its ordinal position in
the ASCII character set. The lexi~ comparison of two characters c 1 and
c2 can now be defined by reducing lexical comparison to integer com­
parison, e.g.:

c1 < c2 = ascii(ci) < ascii(c2)

10.4. Class ~tring 167

Lexical comparison of two strings S 1 and S 2 depends on the lexical com­
parison of the characters in both strings and on the size of the two strings.
Let { c 1 , ••• , Cn } denote the characters in string S h let { d 1 1 ••• 1 dm }
denote the characters in string S 2, and let min (n ,m) be the smallest of the
integers n and m. The string S 1 is then defined to be lexically-less-than
(llt) the string S 2 iff either there exists an index k, 1 ..:;;; k ..:;;; min (n ,m),
such that c1 = d1 for all 1 ..:;;; i < k and ck < dk, or n < m.

The string S 1 is defined to be lexically-equal-to (leq) string S 2 iff n m
and c1 = d; for all I .r;;; i o;;;;n •

The lexical operators can now be defined as follows. The lexical com­
parison stringval €) s is performed, where €) is one of the lexical com­
parison operators given above. If the comparison succeeds, the operation
returns s as value. Otherwise, the operation fails. Success or failure of the
Iexical operators is defined as follows:

Examples: 'a' < 'b'
'b' <'a'

Operation

P<Q
P<= Q
P=Q
p....., .. Q
P>• Q
P>Q

'a'< 'a'
'abc'< 'abd'
'abc' < 'aha'
'abc' < 'abcdef'
'abc' < = 'abc'
'abc'<= 'abd'

Operator: 11 (s : string) : string

Succeeds if

PlltQ
PlltQorPieqQ
p leq Q
..., (P leq Q)
..., (P Ut Q)
..., (P llt Q) and.., (P leq Q)

{value: 'b 1
}

{fails}
{fails}
{value: 'abd 1

}

{fails}
{value: 1abcdef'}
{value: 1abc'}
{value: 1abd 1

}

Action: Returns a new instanee of class string consisting of the characters in
stringval followed by the characters ins.

Examples: 11eg' ll'end'
1now' ll'here'

10.5. Oass array

{value: 'legend'}
{value: 'nowhere'}

Class array provides a facility to create sequences of values. The organization
of this classis:

168 THE SUMMER LIBRARY

dass array(ne/ems: integer, deftal: arbtype)
begin fetdt append, delete, index, last, next,

retrieve, size, sort, update;

proe append(val) (...);

proe update(i, val) (...);

end array;

The elements of the array have arbitrary type. Different elements of an array may
have different types. All array elements are initialized to the default value deftal. See
Section 9.2.12 for a description of <array-expression>s and in particular for a
description of the initialization of arrays.

The operations on arrays are now described in more detail.

Proc: append (val: arbtype): arbtype

Action: Extends the array by adding a new element to it at index position ne/ems
with value val. The size of the array (i.e. nelems) is thus effectively incre­
mented by one.

EXamples: a : == array(4, -I);

{Establishes a context for the following examples by creating a new
instanee of the class array and assigning it to a.}

a.append(I 0);
a~append(20);

{These two statements extend array a with array elements at index posi­
tions 4 and 5 and with values 10 and 20 respectively.}

a(3)
a[4)
a[5]
a[6)

Proc: delete () : arbtype

{value: 1}
{value: 10}
{value: 20}
{error}

Action: Removes the last element (i.e. the element at index position nelems-1)
from the array and returns its valpe. The size of the array (i.e. nelems) is
thus effectively decremented by one. The condition nelems > 0 should
hold prior to the delete operation.

Examples: a : == [10, +O. 30];

{Establishes the context for the following examples.}

a[2) {value: 30}
a.delete {value: 30}
a[2] {error}

10.5. Class array 169

Proc: index () : interval

Action: Returns interva/(0, nelem - 1, 1) {10.6} as value. Thls procedure is par­
ticularly useful in <for-expression>s {9.2.7} that iterate over all indices of
an array.

Examples: a : = array(6, 0);
for n in a.index do a[n] : = n * n od

{First an instanee of array is assigned to variabie a and then the square of
its index is assigned to each array element.}

Proc: last() : orbtype

Action: Returns the value of the array element with index ne/ems-I. Thls is use­
ful when the array is treated in a stack-like fashion by means of append
and delete operations.

Examples: a : == (I 0, 20, 30];
a.last
a.de/ete
a.last

Proc: next(state: undefined-or-integer) :array

{value: 30}
{value: 30}
{value: 20}

Action: Returns the value of the next array element (if any) and fails otherwise.
This procedure is mostly used in conneetion with <for-expression>s
{9.2.7}. next proceeds as follows. If state has the value undefined and
nelem > 0 holds, the array [self.retrieve(O), 1] is returned. If the type of
state is integer and state < nelem -I holds, the array
[self.retrieve(state), state + 1] is retumed. Otherwise, next faits.

Examples: a : = array(5, -1); a[I] : = 10; a[3] : = 20;
for x in a do put(x, '\n') od

{First a new array is created and initialized, next the values l, 10, -1,
20, and -1 are printed on consecutive lines.}

Proc: retrieve(i: integer) : arbtype

Action: Returns the i-th value from the array. The condition 0 ,.;;;;; i < nelems
should hold. See a1so { 9 .2.15}.

Examples: a:= [-2, -2, -2, -2];
a[l] := 7;

{Establishes a context for the following examples. First a new array is
assigned to variabie a. Next, 7 is assigned to the array element with index
1.}

a.retrieve(3);
a.retrieve(l);
a.retrieve(- 5);

{The array elements with indices 3 and 1 are retrieved; this gives · the
respective values -2 and 7. An error will be signalied forthelast expres­
sion since the index -5 is out of range. Note that these three expressions

. can be abbreviated to a[3], a[l] and a[-5] respectively.}

170 THE SUMMER LIBRARY

Proc: size () : integer

Action: Returns the integer value ne/em.

Examples: a : == arr€9'(11, 'de/')
a.size

Proc: sort() : array

{ creates new array}
{returns 17}

Action: Returns a new instanee of class array obtained by sorting the contents of
the array, i.e. self. Values are sorted according totheir type in the follow­
ing order:

undefined
integer
re a/
string
array
table
file
bits
scan.Jtring
interval
(user defi.ned classes in order of declaration in the program)

lntegers and reals are put in order of increasing numeric value. Strings
are sorted lexicographically. Other values are sorted according to their
creation time: older values come before values that were created more
recently.

Exarnples: [4,'z',3,'a'].sort

{value: [3, 4, 'a', 'z']}

Proc: update(i : integer, val: arbtype): arbtype

Action: This procedures updates the value of the i-th element from the array in
such a way that subsequent retrieval (without an intervening update) of
the i-th element returns the value val. val may be of arbitrary type. The
condition 0 .r;;;; i < nelems should hold. See also 9.2.17.

Exarnples: a:= arr€9'(4, -I);

{Establishes the context for the following exarnples.}

a.update(2, 5);
a.update(1, 'ab');

{The first expression assigns the integer value 5 to the array element with
index 2. For the second expression an error will be signalled, since the
index 7 is out of range. Note that these two expressions can be abbrevi­
ated to a[2] : = 5 and a[7] : == 'ab' respectively.}

10.6. Class interval 171

10.6. Class interval

Class interval defines intervals of integer or real values. lnstances of this class
are mostoften used in <for-expression>s {9.2.7}. The organization of this classis as
follows:

class interva/(from, to, by : integer-or-real)
begin feteh next;

proc next(state) (...);

end interval;

The formal parameters from, to and by must be of type integer or real. H one is of
type real, then the values of the other (integer) parameters are first converted to real.
Note that a definition of this class has been given as an example in Section 9.2.7.d.
The only operation (next) on intervals is now described in detail.

Proc: next(state : undefined-or-integer-or-rea/) : array

Action: Returns the next value in the interval (if any) and faits otherwise. Thls
procedure is most often used in conneetion with <for-expression>s. next
proceeds as follows. If the type of state is undefined then set V to the
value. of from, otherwise set V to the value of state + by. If the value of
by is positive and V < to holds, or the value of by is negative and V > =
to holds, then the array [V, V] is returned. In all other cases next fails.

Examples: for x in interval(I, 5, 2) do put(x, '\n') od

{Prints the integers 1, 3 and 5}}

for x in interva/(5, 0, -2) do put(x '\n') od

{Prints the integers 5, 3 and I}

for x in interva/(2, 5, 1.3) do put(x, '\n') od

{Prints the reals 2.0, 3.3 and 4.6}

10.7. Class table

Class table provides an associative memory that can be indexed with values of
arbitrary type. Basically, it is organized as follows:

dass table(nentries : integer, defval : arbtype)
begin fetch index, next, retrieve, size, update;

proc index () (...);

proc update(i, val) (...);

end table;

A table may contain an arbitrary number of entries, but (as a hint for the implemen­
tation) an estimate of the expected number of entries must be given as value of nen­
tries. Each entry in the table consists of a (key, value) pair. An update operation
either adds a new entry to the table or replaces the value part of an existing entry. A
retrieve operation returns the value part of the en try corresponding to a given key. If
such an entry does not exist, then the default value defval is retumed. As a

172 THE SUMMER LIBRARY

consequence, no distinction can be made between entries that were never added to the
table and entries that contain defval as value part. This property of tables can be
used to delete table entries. A table entry will be called live if its value part is not
equal to defval. All other entries are called dead. Assigning defval to the value part
of an entry, kiDs that entry. The operations index, next and size operate on the live
entries in the table. This distinction between live, dead and nonexistent entries is
necessary for the description of the behavior of tables in <for-expression>s .

. See Section 9.2.13 fora description of <table-expression>s and in particular for
a description of the initialization of tables.

In the examples the table taste will be used, It is defined as follows:

taste : • table(20, 0) init (
'sweet': 10,
'bitter': -8,
'sour': 'acid': -11,
'pickled': + 17];

Operatio11S on tables are now described in more detail.

Proc: index() : array

Action: Returns an array with (sorted) table keys, for all live table entries. The
keys are sorted as described in 10.5.

Examples: taste.index

{value: ['acid', 'bitter', 'pickled', 'sour', 'sweet'] }

fort in taste.index do put(t, '\n') od

{Prints the strings 'acid', 'bitter', 'pickled', 'sour' and 'sweet' on consecutive
lines.}

Proc: next(state: undejined-or-array): array

Action: Enumerates the value parts of the live entries in the table. If state is equal
to undejined, the effect of next is the same as the effect of next(self.index,
0). Otherwise, state should have the form [A, N] and the following steps
are performed: As long as N < A.size and self.retrieve(A[ND is equal to
defval, N is incremented by one. . If N = A.size, next fails. Otherwise,
[self.retrieve(A [ND, [A, N +I]] is returned.

Examples: for jlavor in taste do put(jlavor, '\n') od

Notes:

{Printstheintegers -11,-8, 17,-11 and 10.}

If we restriet our attention to the u~e of next in <for-expression>s {9.2.7},
the following can be observed: The index of the table is computed only
once. This gives an array A with a fixed number of keys, which cannot be
affected by operations on the table inside the body of the <for­
expression>. However, the value parts of the entries containing the keys
in A may be affected by intermediate update operations. The procedure
next is defined in such a way that table entries that were killed since the
creation of the index, are effectively skipped.

10.7. Class table 173

Proc: retrieve(key: arbtype): arbtype

Action: If a call of the form update(key,val) bas occurred previously, vat is
returned. Otherwise the default value defval is returned. Note that tables
arealso initialized by means of update operations {9.2.7}.

Examples: taste.retrieve('sour') { value: -11}
taste.retrieve('dulce') {value: 0}

{Note that these examples may be abbreviated to taste['sour'] and
taste['dulce'] respectively.}

Proc: size () : integer

Action: Returns the number of live entties in the table.

Examples: taste.size {value: 5}

Proc: update(key, val : arbtype) : arbtype

Action: Associates the value val with key. If val is equal to the default value defval
this operation k:ills the table entry containing key (if it exists). The value
val is returned as result of update.

Examples: taste.update('salted', 17)

{Adds the (key, value) pair ('salted', 17) to the table and returns 17 as
value. Note that the above expression may be abbreviated to
taste['salted'] : • 17.}

10.8. Oass scan...string

Class scan_string provides a scanning facility for strings and files. Basically, it
is organized as follows:

class scan_string(arg : string-cr-file)
begin fetch any, bal, break, cursor,jind, lit, move,

pos, rtab, span, tab, text;
var text, cursor;

proe any(s) (...);

proc tab(n) (...);

init: cursor : • 0
text : • convert..Jo_string(arg);

end scan_string;

When an instanee of class scan_string is created, the actual value of arg may be either
a string or a file. In the latter case, the file is (at least conceptually) converted to a
string. All scanning procedures operate on this string. The (perhaps converted) value
of arg is assigned to the class variabie text which is thereafter used by all operations
defined for the class. The current cursor position is maintained in the class variabie
cursor. Both text and cursor may be fetched from · outside the class instance. The
value of text remains invariant under all class operations, but the value of cursor may
change.

174 THE SUMMER LIBRARY

Sometimes it is convenient to look at the subject string (text) as being an array
of characters. This is done in the way described inSection 10.4.

A few general restrictions apply to the following definitions:

I) Unless stated otherwise, operations fail if cursor is equal to text.size.

2) If more than one cursor value satisfies some condition, then the smallest of
these values is used.

It must be empbasized that the examples given in this section are not typical:
they serve to illustrate the working of just one procedure, but do not properly illus­
trate the use of procedures in more realistic applications. All these procedures will, in
general, be used in conjunction with <scan-expression>s {9.2.9}. When used in this
way scan_string objects need hardly ever be created or mentioned explicitly. See
chapters 4 and 11 for more interesting examples.

The meaning of the various procedures is defined below.

Proc: any(s: string) :string

Action: If text[cursor] is equal to one of the characters in s, then text[cursor] is
retumed and cursor is incremented by one. Otherwise any fails.

Exainples: p : ... scan_string('quota');

{Establishes the context for the foUowing examples.}

p.any('Ol23456789');

{Tests for the occurrence of digits at the start of the subject string and
fails; the cursor is not affected.}

x : • p.any('pqr')

{This test for the occurrence of one of the characters 'p', 'q' or 'r'
succeeds: the cursor of p is moved to the rigbt (i.e. p.cursor =I) and the
string 'q' is returned by any and assigned to the variabie x.}

Proc: bal(S, P, Q :string) :string

Action: If there exists a cursor value c such that c > cursor, text [c] equal to one
of the characters in S, and text.substr (cursor, c -cursor} 'balanced' with
respect to P and Q, the balanced substring is returned and cursor is set to
c. If more than one value of c satisfies the above condition, then the smal­
lest (i.e. leftmost) one is used. Otherwise bal fails.

A string S is balanced with respect to two other strings P and Q iff:

or

or

S is a single character not in P or Q

S bas the form c1 11 A 11 c2 wbere c1 is a single character occur­
ring in P and c2 is a single character occurring in Q and A is bal­
anced with respect to P and Q.

S bas the form A 11 B and both A and B are balanced with respect
toP and Q.

10.8. Class scan_string

Examples: e : = scan.....string('x:=a+b[i]•(y+5); z:=3');

{Establishes the context for the next example.}

x : = e.bal(';', '([', ')]');

175

{Assigns 'x:=-a+b[i]•(y+5)' to x and moves the cursor to 15, i.e.
e.cursor = 15.}

e := scan_string('{xx(x())!xx}');

{Establishes the context for the next two examples.}

e.bal('!', '({', '})')

{This expression fails and does not move the cursor.}

x : = e.bal('!', '(', ')');

{Assigns '{xx(x())' to x and moves the cursor to 8.}

Proc: break(s :string) :string

Action: If there exists a cursor value c such that c >cursor and text[c] is equal
to one of the characters in s, then text.substr(cursor, c -cursor) is
retumed and the cursor is set to c. If more than one value of c satisfies
the above condition, the smallest (i.e. leftmost) one is used. break fails
otherwise.

Examples: answer : = scan.....string('yeslno');

{Establishes the context for the next two examples.}

answer.break(' !?; ')
answer.break('l')

{fails}

{The last expression succeeds, moves the cursor to 3 and returns the string
'yes'.}

Proc: find(s : string) : string

Action: If there exists a cursor value c such that c ;;;. cursor and s is a substring of
text starting at c, then text.substr (cursor, c -cursor) is retumed and the
cursor is set to c. Otherwise find fails.

Examples: fruit : = scanJtring('apple;pear;lemon;peach');

{Establishes the context for the following examples.}

fruit.find('banana') {fails}
fruit.find('apple')

{Returns the value" (i.e. the empty string) and leaves the cursor at 0}

fruit.find('lemon ')

{Succeeds, moves the cursor to 11, and returns the string 'apple;pear;'.}

176 THE SUMMER LIBRARY
'

Proc: lit(s : string) : string

Action: If s is a substring of text starting at the current cursor position, s is
retumed and cursor is incremented by the length of s. Otherwise fit fails.

Examples: person : = scan_string('the man');

{Establishes the context for the following examples.}

person.lit('some');
person.lit('man ');
person.lit('the')

{fails}
{fails}

{The last expression succeeds, moves cursor to 3 and returns the string
'the'.}

Proc: move(n : integer) :string

Action: If 0 <; cursor + n <; text.size, there are two different cases:
1) n ;;a. 0: Let R be text.substr(cursor ,n).
2) n < 0: Let R be text.substr(cursor+n,-n).
In both cases cursor is incremented by n and R is returned. Otherwise
move fails.

Examples: digits : = scan_string('0/23456789');

{Establishes the context for the following examples.}

digits.move(l5) {faits}
digits.move(5)

{Succeeds, moves the cursor to 5, and returns the string '01234'.}

digits.move(- 2)

{Succeeds, moves the cursor bac:k to 3, and returns the string '34'.}

Proc: · pos(n : integer)

Action: If cursor = n , the empty string is returned. Otherwise pos faits.

Examples: digits : = scan_string('0/23456789');

{Establishes the context for the following examples.}

digits.pos(O); {value: "}
digits.move(2);

{Returns the value '01' and moves the cursor to 2}

digits.pos(O);
digits.pos(2);

Proc: rpos(n : integer)

{faits}
{value: "}

Action: If cursor = text.size - n , the empty string is retumed as value. Otherwise
rpos faits.

~,

10.8. Class scan_string 177

Examples: digits : == scan_,string('0123456789');

Proc:

Action:

Notes:

Proc:

Action:

{Establishes the context for the following examples.}

digits.rpos(lO) {value: "}
digits.rpos(4) {fails}
digits.move(IO)

{Returns the value '0123456789' and moves the cursor to 10}

digits.rpos(O) {value: "}

rtab(n : integer) :string

Let R be equal to text.size - n . lf 0 .s;;; n .s;;; text.size, there are two
different cases:
I) cursor .s;;; R : Set V to text.substr (cursor ,R -cursor).
2) cursor > R : Set V to text.substr (R ,cursor - R).
In both cases the cursor is set to R and V is returned. Otherwise rtab
fails.

rtab(n) bas the sameeffect as tab((text.size)-n).

span(s : string) : string

lf there exists a cursor value c such that c > cursor, and
text.substr(cursor, c -cursor) consists solely of cbaracters in s, this sub-
string is returned and the cursor is set to c. If more than one value of c
satisfies this condition, the largest (i.e. rightmost) one is used. Otherwise
span fails.

Examples: p : = scan_,string(' jinally!');

{Establisbes the context for the following examples.} ·

p.span ('?; ')

p.span('. ')

{fails}

{Succeeds, moves the cursor to 5, and returns the string ' '.}

Proc: tab(n : integer) : string

Action: lf 0 .s;;; n < text.size, there are two different cases:
l) n ;ö!o cursor : Set V to text.substr (cursor ,n -cursor).
2) n < cursor: Set V to text.substr(n ,cursor -n).
In both cases the cursor is set to n and V is returned. Otherwise tab fails.

Examples: h : = scan_,string('History of exact sciences');

{Establishes the context for the following examples.}

h.tab(1)

{Returns the value 'History' and moves the cursor to 7}

h.tab(3)

{Returns the value 'tory' and moves the cursor to 3}

178 THE SUMMER UBRARY

10.9. Oass file

The class file provides extemal character files with associated operations on
them. 'fhe basic organization of this class is as follows:

class file(name, accesstype : string)
begin fetdl close, get, put;

proc close() (...);

proc get() (...);

proc put(v l, v2, ...) (...);

end file;

When a new instanee of class file is created, an external file with name name is
opened or created; name must be an acceptable file name for the local operating sys­
tem. aceesatype determines the intended use of the file as follows:

'r' for reading
'w' for writing

Three predefi.ned file narnes exist: 'stand.Jn', 'standJut' and 'stand....er' which
correspond to the standard input , standard output, imd standard error file respec·
tively. Apart from these predefi.ned file names, there are also three predefi.ned global
variables stand_jn, stand_out and stand_er, which have these three predefi.ned files as
initial value.

Proc: close()

Action: Close file. After a file bas been closed no further i/ o operadons can be
, performed on it.

Examples: scratch : = ftle('tmpl', 'w');

{A file with name 'tmpl' is opened for writing and the resulting file
instanee is assigned to scratch.}

scratch.close;

{Next, that file is closed.}

Notes: All files are closed when the program terminates. Oosing a file from
within the scope of a <try-expression> {9.2.8} is forbidden.

Proc: get() : string

Action: Returns the next line (without trailing newline symbol) from the file and
fails on end of file. ·

Examples: souree : = ftle('mytext', 'r');

{The file 'mytext' is opened for reading and the resulting file instanee is
assigned to source.}

line : = source.get

{Next, one line is read from that file and the resulting string is assigned to
line.}

10.9. Class file 179

stamLin.get

{Reads one Iine from standard input.}

Notes: See also global procedure get { 10.11} which operates on standard input.

Proc: put(vl, v2, ... : integer-or-real-or-string)

Action: Writes the values vl, v2, ... on the file, after converting them to strings.
No newline character is appended.

Examples: f: • file('results', 'w');
f.put(The value of"x" is:', x);

Notes:

{Creates the file 'results' and writes on it.}

stand_er .put('Fatal error!')

{Writes a string on the standard error stream.}

See also global procedure put { 10.11} which operates on standard output.

10.10. Oass bits

Class bits provides arbitrary length bit-strings .and associated operations. A
bit-string coQSists solely of the integer values 0 and 1. This class is organized as fol­
lows:

dass bits(nelem, defval : integer)
begin fetch conj, compl, disj, index, next,

retrieve, update, size;

proe conj(b) (...);

proc update(i, val) (...);

end bits;

The formal parameter nelem must be of type integer and defines the number of
. elements in the bit-string. defval must be either integer 0 or integer 1 and defines the

value to wbich all elements of the bit-string are initialized.

There is no way to initialize hit-strings other than by explicit assignment to
individual elements.

Proc: conj(b : bits) : bits

Action: Computes the bit-wise and with the bits value b. If nelem and b.size are
unequal, the smallest bit-string is first padded with ones at the right end,
i.e. starting at the highest index.

Proc: disj(b: bits) : bits

Action: Computes the bit-wise or with the bits value b. If nelem and b.size are
unequal, then the smallest bit-string is first padded with zeros at the right
end, i.e. starting at the highest index.

180 THE SUMMER LIBRARY

Proc: compl () : bits

Action: Compotes the bit-wise complement.

Proc: index () : interval

Action: Returns the index set interval(O,nelema -1,1) {10.6}.

Proc: next (state: undefined-or-integer): array

Action: Returns the value of the next bit (ü any) and fails otherwise. This pro­
cedure is mostly used in conjunction with <for-expression>s {9.2.7}. next
proceeds as follows. If state is undefined and nelem>O, the array
[self.retrieve(O), I] is returne<i. If the type of state is integer and
statè < nelem -I, the array (selj.retrieve(state), state +I] is retumed.
Otherwise next fails.

Proc: retrieve(i : integer) : integer

Action: Returns the i-th element. The condition 0 < i < nelem should hold.

Proc: size () : integer

Action: Returps the integer value ne/em.

Proc: update(i, val: integer) : integer

Action: Assigns the integer value val to the !i-th element. val should be 0 or I, and
the condition 0 < i < nelem should hold.

10.11. Miscellaneous proeedures

Proc: copy(a: arbtype): arbtype

Action: Returns a copy of the value a. If a is composite, all its components are
copied recursively.

Proc: get() : string

Action: This is an abbreviation for stand...Jn.get() {10.9}. lt reads the next line
(without trailing newline character) from the standard input file and fails
on end of file.

Proc: put(vl, v2, ... : integer-or-real-or-string)

Action: This is an abbreviation for stand...Pilt.put(v1, v2, ...) {I0.9}. It writes the
values vl, v2, ... on the standard. output file, after converting them to

· strings.

Proc: stop(n : integer)

Action: Stops program execution. If n is negative, the names and values of the
actual parameters of all currently entered procedures are printed. The
absolute value of n is returned to the operating system. By convention,
values unequal to zero are considered error codes.

10.11. Miscellaneous procedures 181

Examples: stop(O)

Proc: type(a: arbtype): string

Action: Determine the type of a. The following string values can be returned
depending on the operand type:

Notes:

'integer'
'real'
'string'
'file'
'unde.fined'
'table'
'array'
'bits'

integer
real
string
file
undefined value
table
array
bits

For class instances the class name is returned.

A formal definition of type was given in Section9.2.2.

182

lt. SOME ANNOTATED SUMMER PROGRAMS

11.1. Introduetion

This chapter presents some annotated SUMMER programs. The description of
each program bas the following overall structure:

a) Oiobal description of the tast the program performs and a list of language
features illustrated by it. '

b) Listing of the souree text (with added wie numbers for ease of reference).

c) Sample input (if any).

d) Sample output.

e) A detailed description.

tl.l.l. Word tuples

ll.l.l.a. Overall description

This program reads a number of files and for each different pair or triple of
consecutive words the frequency is counted. A word is a sequence of upper and lower
case letters. The result of the program is an alphabeticiilly ordered frequency table.

The program illustrates: <for-expression>s {9.2.7}, <scan-ex.pression>s {9.2.9},
scanJtring operations (break, span) {10.8}, multiple assignment {9.2.17} and tables
{10.7}.

ll.l.l.b. Souree text

1 # tuples -- count frequency of word pairs and triples #

2 eonst letter : =
3 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMN OPQRSTUVWXYZ',
4 interesting : = 3;

5 proe combine(a, b)
6 return(a 11'1' 11 b);

7 proe word(data)
8 (break(letter) & return(span(letter))
9);

10 program tuples(file_names)
11 (var f, tuple, tupletab : • table(lOOO, 0);

12 for fin file_names
13 do var data;
14 if data : = file(f,'r') fails then
15 put('Can"t open ',f, '\n')
16 else
17 sean data
18 for var wl , w2 : == word(data), w3 : == word(data),
19 pair, triple;
20 while [wl, w2, w3] : = [w2, M,t3, word(data)]
21 do pair : = combine(wl, w2);

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

oei·
'

11.2.1. Word tup1es

tupletab[pair] : = tupletab[pair] + 1;
triple : = combine(pair, w3);
tupletab[triple] : = tupletab[triple] + 1;

oei;
pair : = combine(w2, w3); # the last pair #

tupletab[pair] : = tupletab[pair] + 1
rof;
data.c/ose

fi

for tuple in tupletab.index
do var freq : = tupletab[tuple};

if freq > interesting then
put(tuple.left(20,' '),string(freq).right(lO,' 1

),' \ n 1)

fi
37 od
38)

11.2.1.c. Input

183

The souree text of the programs 'tuples.sm' (the above program) and 'tlex.sm'
{11.2.2}.

11.2.1.d. Output

f/i
flsize
ftlproc
tlexib1e/ array

' i/i
i/i/i
i/od
in/f
mem/i
mem/size
return/mem
size/then
then/retum
tupletab/pair
w/w
word/data

11.2.l.e. DetaUed description

Comment

6
4
5
4
9
4
4
4
4
5
4
6
4
4
7
4

2-4 Constant declaration for letter and interesting. The former is used to recognize
words in the text (line 8), the latter is used as threshold while printing the fre­
quency table (line 34).

/
184 SOME ANNOTATED SUMMER PROGRAMS

5-6 The procedure combine concatenates its arguments separated by the cbaracter
'I' and is used in lines 21, 23 and 26 to build table keys consisting of two or
thrc;e words.

7-9 · The procedure word is tbe basic procedure for recognizing 'words'. It operates
on the current subject (established in lipe 17) and fi.rst locates the beginning of
the next word by break(letter) which moves the cursor to a position just before
a letter. The operation span(letter) spaces over the longest letter sequence in
the subject and delivers that sequence as (string) value. This value is ulti­
mately returned. Note that break faits' if there are no more letters in the sub­
ject. In that case the procedure word faits and the while loop in line 20 is ter­
minated.

10-38 Main program with argument jile_names, whicb contains an array of string
values corresponding to the actual parameters of program tuples. lf, for exam­
ple, the program was called with the two arguments tuples.sm and jlex.sm, the
argument file_names bas the array ['tuples.sm', Jlex.sm'] as value. The <for­
expression> in line 12 iterates over the values in this array.

11 Variabie declarations for f, tuple and tupletab. Note bow tupletab is initialized
to an instanee of class table, in this case of estimated size 1000 and default
value 0. 1t is used to keep account of the occurrence of pairs and triples. The
default value 0 is a convenient initial value for tuples that were not encoun-
~before. ·

12-31 The consecutive values in the array file_names are assigned tof.

13 Declaration for local variabie data.

14 Create an instanee of class file with the. current value of f as name and access
type 'r' (for read access). If the file can be opened., an instanee of class file is
assigned to variabie data. Otherwise the operation faits and an error message
is printed (line 15).

17-28 Scan expression, which establishes the value of data (a file) as subject. Opera­
tions like span and break now operate on the value of data. In the current
context the expression break(letter) is equivalent to data.break(lette-r). The
main purpose of scan expressions is that' they allow the omission of the current
subject (in this case data).

18 Declaration of wl, w2, w3, pair and triple with initialization of w2 and w3.
There is an implicit assumption bere: since the procedure word can fait (see
above), the input file should contain at least two 'words'. If not, the run-time
error 'Undetected faiture of procedure word' will be given and the execution of
the program will be terminated. ·

20-25 <while-expression> terminated by faiture of word. The expression in the test
part of the while expression is a multiple assignment and is equivalent to:

w1: = w2;
w2 := w3;
w3 : = word(data)

21-24 The frequencies of the pair (wl, w2) and the triple (wl, w2, w3) are incre­
mented. Because tupletab bas a default value of 0 (cf.line 11), the frequency of
pairs and triples that did not occur previously, is set to 1 by these statements.

11.2.1. Word tuples 185

29 Terminate i/o operations on this file.

32-37 <for-expression> that loops over all (sorted) indices in ttipletab.

33-35 The value corresponding to the current value of tuple is assigned to local vari­
abie freq. If it is higher than the threshold interesting, the value of tuple (left
aligned in a field of width 20} is printed, foliowed by the value of freq (right
aligned in a field of width 10}.

11.2.2. Flexible arrays

ll.l.2.a. Overall description

This program shows the declaration of class flexible_array, a rather fiexible
kind of array on which the following operations are defined:

a) update and retrieve operations similar to the conesponding operations defined
on arrays.

b) append and delete operations to add an element at the end of the fiexible array
or to delete a number of elements from the end.

c) A size operation, which can both be used to inspeet the current size and to
reset the size.

d) Operations next and index similar to those for normal arrays.

This program illustrates <class-declaration>s {9.1.5}, <for-expression>s
{9.2.7} (cooperating with user-defined fields next and index) and <assert-expression>s
{9.2.10}.

Note that the built-in arrays in SOMMER are already quite 'fl.exible': operations
similar to append, delete and top are defined on them. The purpose of the following
example is to show how such a data type could be defined in a user program.

ll.:U.b. Souree text

I # fl.exible_array #

2 dass flexible_array ()
3 begin fetch uptkJte, retrieve, append, delete, size, next,
4 index, top;
5 store size : change_size;

6 var mem, size;

7 proc extend(n)
8 (var i, ml :- array(n, undefined);
9 for i in mem.index do ml[i] : = mem[i] od;

10 mem:= ml
11);

12 proc retrieve(i)
13 if 0 < = i< size then return(mem[i]) else stop(-1) ft;

14 proc update(i, v)
15 ifO <=i< size then return(mem[i] := v) else stop(-1) fi;

16 proc append(v)

186 SOME ANNOTATED SUMMER PROGRAMS

17 (if size > = mem.size then extend(size + 10) 6;
18 mem[size] : = v;
19 size: = size + 1;
20 return(v)
21);

22 proc delete(n)
23 if n >"" 0 then return(chtmge.Jize(size - n)) else stop(-I) 6;

24 proe change.Jize(n)
25 ifn<O
26 then
27 freturn
28 else
29 if n > mem.size
30 then
31 extend(n)
32 else
33 var i;
34 for i in interval(n, size-I, I)
35 do mem[î]: = undeftned od
36 ft;
37 return(size: = n)
38 6;

39 proe next(state)
40 (if state = undejined then state : = 0 ft;
41 if state < size
42 then
43 return([mem[state], state + I])

· 44 else
45 freturn
46 ft
47);

48 proe index()
49 return(interval(O, size - 1, 1));

50 proe top()
51 if size == 0 thenfreturn else return(mem[size-1]) fi;

52 init: mem:= array(lO, undefined);
53 size :• 0;
54 end ftexible..JJI'ray;

55 proe p4(v) put(string(v).right(4, ' '));

56 program demo_Jfex()
57 (var f, i, k;
58 const N : = 12;

59 f: = ftexible..JJI'ray;
60 put('lnitialize f:');

11.2.2. Flexible arrays

61 for i in intenal(O, N-1, 1)
62 do fappend(i•i); p4(f[i]);
63 assertftop = i•i &f[i] = i•i &fsize = i+ l;
64 od;

65 put(' \nlndices in f');
66 i:= 0;
67 for k in findex
68 do p4(k);
69 assert k = i;
70 i:=i+l
71
72

od;
assert i= N;

73
74
75
76
77
78
79
80

put('\nValues inf: ');
i:== 0;
for k inf
dop4(k);

assert k = f[i] & k = i•i;
i:=i+l

od;
assert i"" N;

81
82

fdelete(2);
assertf.size = N-2;

83 fsize : = 7;
84 assert fsize == 7;

85)

ll.l.l.c. Input

None

ll.l.l.d. Output

lnitialize f: 0
Indices in f: 0
Values in f: 0

4 9 16 25 36 49 64 81 100 121
2 3 4 5 6 7 8 9 10 11
4 9 16 25 36 49 64 81 100 121

U.l.l.e. Detailed deseriptlon

187

2-54, 55, 56-85 Declarations of class ftexible_array, procedure p4 and program.
demo_jlex.

3-5 Declarations of fields that may be accessed from outside the class. The fields
listed in lines 3-4 may be fetched. Assignments to the field size are allowed
and are carried out by the procedure change.Jize.

7-ll Procedure extend is used only inside the class declaration and extends array
mem: a new array m1 is created, all values in mem are copied to it, and, finally,
the new array is assigned to mem.

188 SOME ANNOTATED SUMMER PROGRAMS

12-13 Prócedure retrieve ensures that i lies in the interval 0 ",.;; i < size and then
returns the i -tb element of mem. If, for example, f is an instanee of class
.flexible_array, then

x:= /[5];

is equivalent to

x : = fretrieve(5)

14-15 Procedure update changes the value bf the i-th element into v provided that
0 ",.;; i < size. If, again,fis a.flexible_array,

/[5] :== 7

is equivalent to

fupdate(5, 7)

16-21 Procedure append adds the value v at the end of the jlexible_array. If neces­
sary, mem is extended first.

22-23 Procedure de/ete deletes the rightmost n elements by calüng change_size (see
below).

24-38 Procedure change_size implements assignments io the field size and is called to
evaluate expressions lik:e

f.size := 3.

The seeming complexity of change_size is due to the fact that the invariant

size <i < mem.size- mem[i] = undefined

is maintained to ensure that elements 'added' to the array are properly set to
undejined.

39-47 A user-defined next procedure. lts operation is explained in conjurîction with
the <for-expression> in lines 75-79.

48-49 A user-defined index procedure, which deüvers an interval of. the legal indices
in this jlexible_array.

50-51 Procedure top delivers the rightmost element of the.flexible_array.

52-53 Initialization code. Assigns an array value to mem and sets size to zero.

55 Procedure p4 prints its argument v right aügned in a field of width 4.

59 An instanee of .flexible_array is assigned tof

61-64 Fill the .flexible_array with squares. Note how the <assert-expression> checks
that the operations have been performed properly. If the <assert-expression>
fails, execution of the whole program is aborted.

67-71 Loop using the index operation. The variabie i is used to maintain a 'shadow'
administration of the index values; this is used by the <assert-expression in
line 72.

75-79 Loop using the next opei'ation. The expression

for k infdo ... od

is equivalent to

11.2.2. Flexible arrays 189

phi := f;
sigma : = undefined;
while [k, sigma] : == phi.next(sigma) do ... od

As we see in line 40, next sets its argument state to 0 whên its value is
undefined. On subsequent calls, the value of state is compared with the value
of size (line 41). If the former is less than the latter, an array with value-for­
tJûs..iteration and new-state is returned. Note how the multiple assignment

[k, sigma] : = phi.next(sigma)

assigns the value-for-this-iteration to k and the new-state to sigma. The next
operation fails if there are no moreelementsin thejlexible....JliTay.

81-82 Delete the last two elements and make sure that the size of f bas been reduced
accordingly.

83-84 Assign to the size field and check resulting size.

190

ll. SUMMARY OF SUMMER SYNTAX

<summer-program> :: =
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration> I
<class-declaration> I <operator-symbol-declaration>

)•
<program-declaration> .

<program-declaration> :: =
PROGRAM <identifier~ '(' [<identifier>] ')' [<expression>].

<operator-symbol-declaration> :: =
(MONADIC I DYADIC) { <operator-symbol> ',' }+ ';'.

<class-declaration> :: -
CLASS <identifier> <formats>
BEGIN <subclass-declaration>

<fetcb-associations> <store-associations>
(<variable-declaration> I <constant-declaration> I

<procedure-declaration> I <operator-declaration>
)*
(INIT ':' <block> 1

END <identifier> ';' •

<subclass-declaration> :: = [SUBCLASS OF <identifier> '; 1 1 .
<fetch-associations> :: = [FETCH <associations> ';'] .

<store-associations> :: = [STORE <associations> '; 1 1 .
<associations> :: = { <association> ',' } + .
<association> :: .. <field-identifier> [':' <ideutifier> 1.
<field-identifier> ::... <identifier> I <opetator-symbol> .

<procedure-declaration> :: =
PROC <identifier> <formats> [<expression>] ';'.

<operator-declaration> :: =
OP <operator-symbol> <formats> [<expression>] ';' .

<variable-declaration> : : = V AR { <variable-initialization> 1
, ' } + 1

,'
1 ~

<variable-initialization> :: = <ideutifier> [1
:-' <expression> 1 .

<constant-declaration> :: • CONST { <constant-initialization> 1
,

1
} + 1

;' •

<constant-initialization> :: = <identifiet> 1:=' <constant-expression> .

<formals> :: = 1
(

1
{ <ideutifier> 1

,' } • ')' •

<constant> :: = <string-constant> I <integer-constant> I <real-constant> .

SUMMARY OF SUMMER SYNTAX

<constant-operator> :: = 1+ 1 I 1
-' I '•' 1'1' I'%' 1'11' .

<constant-expression> :: =
<simple-constant-expression>
(<constant-operator> <constant-expression>)* .

<simple-constant-expression> :: =
<constant> I <identifier> I'(' <constant-expression> ')' I
1
-' <simple-constant-expression> .

<expression> :: = <dyadic-expression> .

<monadic-expression> :: = (<monadic-operator>)• <primary> .

<monadic-operator> :: = '-' I'- 1 I <operator-symbol> .

<dyadic-operator> :: =
'+' I'-' I '* 1 I 'I' I'%' I '11' I'<' I~<-~ I'>' I'>=' I
1=1 I '-= 1 I':=' I'&' 1'1' I <operator-symbol>.

<dyadic-expression> :: =
<monadic-expression> (<dyadic-operator> <monadic-expression>)* •

<primary> :: = <unit> (<subscript> I <select>)* .

<Unit>::=
<constant> I <identifier-or-call> I <return-expression> I
<if-expression> I <case-expression> I <while-expression> I
<for•expression> I <scan-expression> I <try-expression> I
<assert-expression> I <parenthesized-expression> I
<array-expression> I <table-expression> .

<identifier-or-call> :: = <identifier> [<actuals> J •

<actuals> :: = '(1
{ <expression> 1

,' }* ')' .

<subscript> :.: = 1
{' <expression> ']'.

<select> :: = 1
.' <identifier> [<actuals>] .

<return-expression> :: = FRETURN I RETURN ('(' <expression> ')'] .

<While-expression> ::= WHILE <test> DO <block> OD.

<try-expression> :: = TRY { <expression> 1
,' } + [UNTIL <block>] YRT •

<scan-expression> :: = SCAN <expression> FOR <block> ROF .

<for-expression> :: = FOR <identifier> IN <expression> DO <block> oo.

<case-expression> :: =

191

CASE <expression> OF { <case-entry> '.' }* [DEFAULT':' <block>) ESAC.

<case-en try> : : = { <constant-expression> 1
:

1
} + < block> .

<assert-expression> :: = ASSERT <expression> .

192

<if-expression> :: =
IF <test> THEN <block>
(BLIF <test> THEN <block>)*
[BLSE <block>] PI .

<test>::= <expression> [FAILS I SUCCEEDS].

<parenthesized-expression> :: == '(' <block> ')' .

<block> ::==
(<variable-declaration>l<constant-declaration>)* {[<expression>] ',· '}• .

<array-expression> :: ==
ARRAY <size..and-default> [INIT <array-initialization> I
<array-initialization> .

<size-and-default> :: = '(' <expression> ',' <expression> ')'.

<array-initialization> :: = '[' { <expression> ', ' } • '}' .

<table-expression> : : =
TABLE <size..and-default> [INIT <table-initialization>) I
<table-initialization> .

<table-initialization> :: = '[' { <table-element> ',' }• ']' .

<table-element> :: = { <expression> ';· '} + ':' <expression> .

193

INDEX FOR PART 11

A

a_class 104, 117
a_composite_instance 103
<actuals> 122
a_integer 102, 121, 126, 134, 135, 142,

143, 145, 154, 155
any 174
append 168
a_proc 103, 114
ARRAY 142
array 123, 124, 142, 143, 145, 147, 167
<array-expression> 141, 168
<array-initialization> 141, 153
ASSERT 139
<assert-expression> 139
assignment 153
<association> 115, 116
<associations> 115, 116
a.Jtring 102, 122, 126
a_undefined 103, 112, 113, 114, 117,

124, 126, 128, 130, 134, 135,
136, 137, 140, 141, 142, 145,
151, 152

B

ba/174
basic va1ues (BASIC-INSTANCE) 101
BEGIN ll7, 124, 126, 147, 148, 149
bind 105, 111, 112, 113, 114, 117, 124,

126, 138
binding 105, 111, 123, 124, 126, 134,

135, 147, 148, 151, 152, 154,
155, 157

bits 179
<block> 108, 112, 123, 129, 133, 140,

69
break 175

c

CASE 132
<case-entry> 131, 132, 156
<case-expression> 131, 133
center 163
CLASS 104, 117, 124, 126, 147, 148, 149
c/ass_decl103, 126, 147, 148, 149, 158
<class-declaration> 101, 115, 116, 123,

146, 153
close 178
comment97

194 INDEX FOR PART 11

conunent~bol97
comp/180
COMPOSITE-INSTANCE 103
conj 179
CONST ll3
<constant> 121, 156
<constant-declaration> 113, 140, 156
<constant-expression> 113, 131, 156
<constant-initialization> 113, 156

1 <constant-operator> 156
contents 104, 158
copy 180

D

declarations 110
DEFAULT 132
delete 168
<delimiter> 97
DENOTABLE-VALUE lOl
denotational semantics 64, 99
dereference 123, 124, 128, 132, 134, 135,

disj 179

138, 142, 143, 145, 147, 148,
150, 151, 152, 154, 155, 157,
158

DO 133, 134, 135
<dyadic-expression> 152, 153
<dyadic-operator> 120, 152, 153, 154

ELIF 130
ELSE 130

E

END 117, 124, 126, 147, 148, 149
ENV 111, 112, 113, 114, 117, 123, 124,

126, 134, 135, 136, 137, 138,
140, 141, 147, 148, 151, 152,
154, 155, 157

env 103
ENVgloba/111, 124, 126
ENVIRONMENT 104
environment.104
equa/158
ERROR 111, ll3, ll7, 123, 124, 126,

ESAC 132

132, 134, 135, 139, 140, 141,
147, 148, 151, 152, 154, 155,
157

escape sequence 98
eva/111, 113, 123, 124, 126, 128, 129,

130, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142,
143, 145, 147, 150, 151, 152,
154, 155

eval_turay_init 142, 143
eval_ca/1122, 123, 124, 126, 138, 142,

143, 145, 147, 148, 151, 152,
154, 155

eval_field....selection 123, 124, 134, 135,
142, 143, 145, 147, 148, 150,
151, 152, 154, 155

eval....standard_procedure 124, 126
eval_table.Jnit 145
evaluation process 106, 108
e:xpand....super _class 117
<expression> 111, 120, 122, 129
extend 104, 111, 112, 113, 124, 126

F

F 124, 126, 128, 129, 133, 136, 137, 140,
141, 151, 152, 154, 155

~AILS 129
FETCH 147, 148, 149
<fetch-associations> 115, 116, 146
Fl130
field selection 146, 153
<field-identifier> 115, 116, 146
file 178
find 175
FOR 134, 135, 138
<for-expression> 133, 134, 164, 169,

171, 172
<formats> 120, 123
FR 124, 126, 128, 129, 130, 133, 136,

137, 140, 141, 151, 152
FRETURN 128

INDEX FOR PART 11 195

G K

get 178, 180

H

has 102, 103, 148, 149
has_binding 105, 123, 124, 151, 152,

154, 155
has_jield 148, 149, 151, 152, 154, 155

I

<identifier> 97, 101, 122
<identifier-or-call> 122
IF 130
<if-expression> 129
IN 134, 135
index 123, 124, 126, 140, 141, 142, 143,

145, 147, 154, 155, 164, 169,
172, 180

INIT 117, 124, 126, 142, 143, 145, 147,
148, 149

instanee 115
instanee (creation of) 124
INTEGER 102
integer 91, 159
<integer-constant> 97, 121, 160
interva/164, 171, 180
intva/102, 126, 158
is_class 104, 123, 124, 126
is_composite_jnstance 103
is_jnstance 123, 124
is_jnteger 102, 126, 157, 158
is_)oc 104, 123, 124, 134, 135, 147, 148,

154, 155, 158
is_proc 104, 111, 123, 124, 126, 151,

152, 154, 155
is_string 102, 126, 138, 157, 158
u_undejmed103, 126

keywords 97

L

last 169
layout symbols 97
left 164
lexical units 97
fit 176
LOCAT/ON 101

M

metalanguage 99
modify 104, 134, 135, 147, 148, 154, l55
<monadic-expression> 151
<monadic-operator> 120, 151
move 176
multiple assignment 153

N

N ll1, 112, 113, 114, 117, 121, 122, 123,
124, 126, 128, 129, 130, 132,
133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 145,
147, 148, 150, 151, 152, 154,
155

name_copy 105, 124, 126, 138, 140, 141
narnes 105, 111, 124, 126
new_jnner -,Scope 105, 124, 126, 138,

140, 141
new_proc.Jcope 105, lil, 124, 126
next 134, 164, 169, 171, 172, 180
non-printable characters 98
NR 124, 126, 128, 129, 130, 133, 136,

137, 140, 141, 151, 152

19~ INDEX FOR PART.II

0

OD 133, 134, 135
OF 132
OP 114
operation 102, 103, 147, 148
<operator-declaration> 114, 120, 151,

153
<operator-symbol> 97, 98, ll9, 151,

152
<operator-symbo1-declaration> 119,

120

p

<parenthesized-expression> 140
parse expression 106
partial.Jtate_copy 105, 136, 137
pos 176
priority (of operators) 152
Pii,OC 114, 124, 126
PROCEDURE 103
<procedure-declaration> 101, 114, 123
PROGRAM 111
<program-declaration> 111
put 179, 180

R

rea/97, 161
<real-constant> 97, 121, 162
rep/165
rep/ace 165
require_constant_J!xpression 113, 132,

157
retrieve 150, 165, 169, 173, 180
RETURN 128
<return-expression> 108, 127, 137
reverse 165
right 166
ROF 138
rpos 176
rtab 177

s

same_ps 103, 158
SCAN 138
<scan-expression> 138
scan,.Jtring 138, 173
scope 110
<select> 146, 153
self 123, 124, 126
semantic domain 10 l
<simple-constant-expression> . 156
single quote character 98
size 122, 123, 124, 126, 140, 141, 142,

145, 147, 148, 166, 170, 173,
180

<siz.e-and-default> 141, 144
sort 170
span 177
STATE 101, 111, 112, ll3, 124, 126,

134, 135, 147, 148, 154, 155,
158

stop 180
STORABLE-VALUE 101
STORE 147, 148, 149
<store-associations> 115, 116, 146
STRING 102
string 98, 163
<string-constant> 97, 98, 121, 163
string_equolll7, 147, 148, 149, 151,

•
152, 154, 155, 158

stringva/102, 126, 158
<subclass-dec1aration> 115, 116
subject 122, 123, 124, 127, 138
<subscript> 150, 153
subscription 150, 153
substr 166
substring 122, 158
SUCCEEDS 129
<summer-program> 110
syntax notation 96

T

tab 177
TABLE 145
table 144, 171

INDEX FOR PART ll

<tab1e-element> 144
<table-expression> 144
<tab1e-initialization> 144
<test> 129, 133
text 124, 126, 147, 148, 149
THEN 130
TRY 136, 137
<try-expression> 136, 137, 178
type 124, 126, 181

u

UNDEFINED 102
<unit> 153
UNTIL 136, 137
update 143, 146, 150, 153, 170, 173, 180

V

VAR 112, ll3
<variable-declaration> 110, 112, 140
<variab1e-initialization> 108, I 10, 112
varinit 108, llO, 112
Vienna Definition Language 99

w

WHILE 133
<wbile-expression> 133, 134

y

YRT 136, 137

% 160
& 153
* 160, 162
+ 160, 162

160, 162
I 160, 162
:= 153
< 161, 162, 166
< = 161, 162, 166
= 154, 161, 162, 166
> 161, 162, 166
> ... 161, 162, 166
11167
- 151
-- 154, 161, 162, 166
1153

197

Stellingen behorende bij het proefschrift

From SPRING to SUMMER

Design, Definition and Implementation
of Programming Languages for

String Manip~lation and Pattem Matching

door

Paul KUnt

1. Formele taaldefinities vormen een waardevol hulpmiddel bij het ontwerpen van
programmeertalen. Het heeft voordelen als dergelijke definities bovendien exe­
cuteerbaar zijn.

Hoofdstuk 5 van dit proefschri(t.

2. Het verdient aanbeveling om in imperatieve programmeertalen ·een taal­
constructie in te voeren die het mogelijk maakt om de neveneffecten van d~ uit­
voering van bepaalde programmadelen ongedaan te maken. De 'try-expressie'
in SUMMER is hiervan een voorbeeld. De door Randeli gefutroduceerde
'recovery cache' kan met succes gebruikt worden bij de implementatie van een
dergelijke taalconstructie.

Hoofdstukken 3, 4 en 6 van dit proefschrift.

3. Indien men het 'class' concept gebruikt om polymorfe, polyadische operaties te
modelleren, doet zich het, vanuit wiskundig standpunt ongewenste, verschijnsel
voor dat de identificatie van dergelijke operaties afhangt van hun eerste argu­
ment. Verdergaande toepassing van het class concept wordt hierdoor bemoei­
lijkt.

4. De methode van Ammann voor herstel van syntactische fouten bij het ontleden
van programmateksten functioneert beter naarmate meer syntactische construc­
ties uit de programmeertaal omsloten worden door, te onderscheiden, paren ter­
minale symbolen.

5. Het 'pijp' -mechanisme in het UNIX timesharing systeem biedt de mogelijkheid
om de in- en uitvoerstromen van twee of meer processen met elkaar te verbin­
den maar geeft geen enkele garantie voor een consistente interpretatie van deze
stromen door de samenwerkende processen.

6. De toename in rekencapaciteit die het gevolg is van de toepassing vari de chip­
technologie dient, althans gedeeltelijk, benut te worden om de interactie met
computersystemen te humaniseren.

7. Men zou veel misverstanden kunnen voorkomen door het vakgebied 'Kunstma­
tige Intelligentie' voortaan met 'Geavanceerde Programmeertechnieken' aan te
duiden.

8. In het klassieke 'data flow' model worden conditionele takken van een
programma pas geëvalueerd nadat de bijbehorende test geëvalueerd is. In het
'nijvere data flow' model is deze laatste restrictie opgeheven en. worden alle
beschikbare processors dus maximaal bezet gehouden met (mogelijk overbo­
dige) berekeningen. Het is zinvol om te onderzoeken wat de effectieve snel­
heidswinst is die met het nijvere data flow model behaald kan worden in verge­
lijking tot het klassieke geval.

9. De voortdurende verbetering der communicatiemiddelen vermindert geenszins
de isolatie van het individu. Het toenemend beroep dat op Telefonische Hulp­
diensten gedaan wordt wijst hierop.

10. Bij het onderwijs dient meer aandacht besteed te worden aan het onderricht in
het (zowel mondeling als schriftelijk) overdragen van kennis en aan de hulpmid­
delen die daarbij ter beschikking staan.

11. Het contact tussen automatiseringsdeskundigen en hun toekomstige slachtoffers
behoeft in vele opzichten verbetering.

