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Atomic

An easier-to-use and harder-to-implement primitive

withLk:
 lock->(unit->α)->α

let xfer src dst x =
withLk src.lk (fun()->
withLk dst.lk (fun()->
 src.bal <- src.bal-x;
 dst.bal  <-  dst.bal+x
))

lock acquire/release   (behave as if)
  no interleaved computation

atomic:
 (unit->α)->α

let xfer src dst x =
atomic (fun()->
 src.bal <- src.bal-x;
 dst.bal <- dst.bal+x
)
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Why now?

Multicore unleashing small-scale parallel computers on 
the programming masses

Threads and shared memory remaining a key model
– Most common if not the best

Locks and condition variables not enough
– Cumbersome, error-prone, slow

Atomicity should be a hot area, and it is…
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A big deal

Software-transactions research broad…

• Programming languages 
 PLDI 3x, POPL, ICFP, OOPSLA, ECOOP, HASKELL

• Architecture
    ISCA, HPCA, ASPLOS 

• Parallel programming
  PPoPP, PODC

… and coming together, e.g., 
TRANSACT & WTW at PLDI06
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Our plan

• Motivation (and non-motivation)
– With a “PL bias” and an overly skeptical eye

• Semantics semi-formally
• Language-design options and issues

Next lecture: Software-implementation approaches
– No mention of hardware (see Dwarkadas lecture)

Metapoint: Much research focused on implementations, but 
let’s “eat our vegetables”

Note: Examples in Caml and Java (metapoint: it largely 
doesn’t matter)
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Motivation

• Flanagan gave two lectures showing why atomicity is 
a simple, powerful correctness property
– Inside an atomic block, sequential reasoning is 

sound!
• Why check it if we can provide it

– And he ignored deadlock
• Other key advantages of providing it

– Easier for code evolution
– Easier “blame analysis” at run-time
– Avoid priority inversion
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Code evolution

Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

// x, y, and z are
// globals
void foo() {
synchronized(???){
 x.f1 = y.f2 + z.f3;
}}

• Want to write foo to be 
race and deadlock free
– What locks should I 

acquire? (Are y and z 
immutable?)

– In what order?
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Code evolution, cont’d

Not just new code is easier: fixing bugs

Flanagan’s JDK example with atomics:

StringBuffer append(StringBuffer sb) { 
 
 int len = atomic { sb.length(); }
 if(this.count + len > this.value.length)
   this.expand(…);
 atomic {   
  sb.getChars(0,len,this.value,this.count);
 }

}
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Code evolution, cont’d

Not just new code is easier: fixing bugs

Flanagan’s JDK example with atomics:

StringBuffer append(StringBuffer sb) { 
 atomic {
 int len = atomic { sb.length(); }
 if(this.count + len > this.value.length)
   this.expand(…);
 atomic {   
  sb.getChars(0,len,this.value,this.count);
 }
 }
}
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Blame analysis?

Atomic localizes errors

(Bad code messes up only the thread executing it)

void bad1(){
 x.balance -= 100;
}

void bad2(){
 synchronized(lk){
   while(true) ;
 }
}

• Unsynchronized actions by other 
threads are invisible to atomic

• Atomic blocks that are too long 
may get starved, but won’t starve 
others

– Can give longer time slices
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Priority inversion

• Classic problem:

High priority thread blocked on lock held by low 
priority thread

But medium priority thread keeps running, so low 
priority can’t proceed

Result: medium > high
• Transactions are abortable “at any point”, so we can 

abort the low, then run the high
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Non-motivation

Several things make shared-memory concurrency hard

1. Critical-section granularity
– Fundamental application-level issue?
– Transactions no help beyond easier evolution?

2. Application-level progress
– Strictly speaking, transactions avoid deadlock
– But they can livelock
– And the application can deadlock
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The clincher

“Bad” programmers can destroy every advantage 
transactions have over locks

class SpinLock {
  volatile boolean b = false;
  void acquire() { 
    while(true) {
      while(b) ; //optional spin
      atomic { 
       if(b) continue; //test and set
       b = true;
       return; }
    }
  }
  void release() { atomic {b = false;} }
}
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Our plan

• Motivation (and non-motivation)
– With a “PL bias” and an overly skeptical eye
– Bonus digression: The GC analogy

• Semantics semi-formally
• Language-design options and issues

Next lecture: Software-implementation approaches
– Brief mention of hardware (see Dwarkadas lecture)

Metapoint: Much research focused on implementations, 
but let’s “eat our vegetables”
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Why an analogy

• Already gave some of the crisp technical reasons 
why atomic is better than locks 

• An analogy isn’t logically valid, but can be
– Convincing and memorable
– Research-guiding

Software transactions are to concurrency as 

garbage collection is to memory management
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Hard balancing acts

memory management

correct, small footprint? 
• free too much: 

dangling ptr
• free too little: 

leak, exhaust memory

non-modular
• deallocation needs 

“whole-program  is     
done with data”

concurrency

correct, fast synchronization?
• lock too little: 

race
• lock too much: 

sequentialize, deadlock

non-modular

• access needs 
“whole-program uses     
same lock”
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Move to the run-time

• Correct [manual memory management / lock-based 
synhronization] requires subtle whole-program 
invariants

• [Garbage-collection / software-transactions] also 
requires subtle whole-program invariants, but 
localized in the run-time system
– With compiler and/or hardware cooperation
– Complexity doesn’t increase with size of program
– Can be “one-size-fits-most”
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Much more

More similarities:

• Old way still there (reimplement locks or free-lists)

• Basic trade-offs
– Mark-sweep vs. copy
– Rollback vs. private-memory

• I/O (writing pointers / mid-transaction data)

• …

I now think “analogically” about each new idea!

See a “tech-report” on my web-page (quick, fun read)
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Our plan

• Motivation (and non-motivation)
– With a “PL bias” and an overly skeptical eye
– Bonus digression: The GC analogy

• Semantics semi-formally
• Language-design options and issues

Next lecture: Software-implementation approaches
– Brief mention of hardware (see Dwarkadas lecture)

Metapoint: Much research focused on implementations, 
but let’s “eat our vegetables”
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Atomic

An easier-to-use and harder-to-implement primitive

withLk:
 lock->(unit->α)->α

let xfer src dst x =
withLk src.lk (fun()->
withLk dst.lk (fun()->
 src.bal <- src.bal-x;
 dst.bal  <-  dst.bal+x
))

lock acquire/release   (behave as if)
  no interleaved computation

atomic:
 (unit->α)->α

let xfer src dst x =
atomic (fun()->
 src.bal <- src.bal-x;
 dst.bal <- dst.bal+x
)



17 July 2006 Dan Grossman, 2006 Summer School 21

Strong atomicity

(behave as if) no interleaved computation

• Before a transaction “commits” 
– Other threads don’t “read its writes”
– It doesn’t “read other threads’ writes”

• This is just the semantics
– Can interleave more unobservably
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Formalizing it

At the high-level, a formal small-step operational 
semantics is simple

• Atomic block “runs in 1 step”! [Harris et al PPoPP05]
• Recall from intro lecture:

“one thread, one step” H,e → H’,e’,o

     “program, one step”  to H,e1;…;en → H’,e1’ ;…;em’

Wrong

    H,e →  H’,e’, o                    
––––––––––––––––––––       ––––––––––––––––––––

H,atomic e → H’, e’, o        H,atomic v → H, v, None
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Closer to right

The essence of atomic is that it’s “all one step”

Note →* is reflexive, transitive closure.

Ignoring fork

    H,e →*  H’,v
––––––––––––––––––

H,atomic e → H’, v

Claim (unproven): Adding atomic to fork-free program 
has no effect

About fork (exercise): One step could create n threads
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Incorporating abort (a.k.a. retry)

An explicit abort (a.k.a. retry) is a very useful feature.

Tiny example:

let xfer src dst x =
 atomic (fun()->
  dst.bal <- dst.bal+x;
  if(src.bal < x) abort;
  src.bal <- src.bal-x
 )

Formally: e ::= …| abort 

Non-determinism is elegant 
but unrealistic!
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Lower-level

We could also define an operational semantics closer to 
an actual implementation

• Versioning of objects
• Locking of objects

And prove such semantics equivalent to our 

“magic semantics”

See: [Vitek et al. ECOOP04]
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Weak atomicity

(behave as if) no interleaved transactions

• Before a transaction “commits” 
– Other threads’ transactions don’t “read its writes”
– It doesn’t “read other threads’ transactions’ writes”

• This is just the semantics
– Can interleave more unobservably
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A lie

Bogus claim: “Under this ‘definition’, atomic blocks are 
still atomic w.r.t. each other”

Reality: Assuming no races with non-transactional code

   // invariant: x and y are even
atomic {     y=x;     atomic {
  ++x;                 if(y%2==1)
  f();                   bad();
  --x;                }
}
    

Note: The transactions might even access disjoint 
memory.
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Is that so bad?

Assumptions are fine if they’re true
• Programmer discipline

– Good luck (cf. array-bounds in C)
• Race-detection technology

– Whole-program analysis
• Type system

– Much existing work should adapt
– Avoiding code duplication non-trivial
– Haskell uses a monad to segregate “transaction 

variables”
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Our plan

• Motivation (and non-motivation)
– With a “PL bias” and an overly skeptical eye

• Semantics semi-formally
• Language-design options and issues

Next lecture: Software-implementation approaches
– Brief mention of hardware (see Dwarkadas lecture)

Metapoint: Much research focused on implementations, 
but let’s “eat our vegetables”
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Language-design issues

“fancy features” & interaction with other constructs
As time permits, with bias toward AtomCaml [ICFP05]:
• Strong vs. weak vs. type distinction on variables
• Interaction with exceptions
• Interaction with native-code
• Condition-variable idioms
• Closed nesting (flatten vs. partial rollback)
• Open nesting (back-door or proper abstraction?)
• Parallel nesting (parallelism within transactions)
• The orelse combinator
• Memory-ordering issues 
• Atomic as a first-class function (elegant, unuseful?)
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Exceptions

If code in atomic raises exception caught outside 
atomic, does the transaction abort?

We say no!
• atomic = “no interleaving until control leaves”
• Else atomic changes sequential semantics:

let x = ref 0 in
atomic (fun () -> x := 1; f())  
assert((!x)=1) (*holds in our semantics*)

A variant of exception-handling that reverts state might be useful and 
share implementation (talk to Shinnar)
– But not about concurrency
– Has problems with the exception value
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Exceptions

With “exception commits” and catch, the programmer 
can get “exception aborts”

atomic {
  try { s }
  catch (Throwable e) {
     abort;
  }
}
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Handling I/O

• I/O one instance of native code …

let f () =
 write_file_foo();
 …
 read_file_foo()

let g () =
  atomic f; (* read won’t see write *)
  f()       (* read may   see write *)

• Buffering sends (output) easy and necessary
• Logging receives (input) easy and necessary

• But input-after-output does not work
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Native mechanism

• Previous approaches: no native calls in atomic
– raise an exception
– atomic no longer preserves meaning

• Can let the C code decide:
– Provide 2 functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise exception, 

or do something else
– in-atomic can register commit- & abort- actions 

(sufficient for buffering)
– a pragmatic, imperfect solution (necessarily)

• The “launch missiles problem”
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Language-design issues

“fancy features” & interaction with other constructs
As time permits, with bias toward AtomCaml [ICFP05]:
• Strong vs. weak vs. type distinction on variables
• Interaction with exceptions
• Interaction with native-code
• Condition-variable idioms
• Closed nesting (flatten vs. partial rollback)
• Open nesting (back-door or proper abstraction?)
• Parallel nesting (parallelism within transactions)
• The orelse combinator
• Memory-ordering issues 
• Atomic as a first-class function (elegant, unuseful?)
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Critical sections

• Most code looks like this: 

try
  lock m;
  let result = e in
  unlock m;
  result
with ex -> (unlock m; raise ex)

• And often this is easier and equivalent:
atomic(fun()-> e)

• But not always…
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Non-atomic locking

Changing a lock acquire/release to atomic is wrong if it:
• Does something and “waits for a response”
• Calls native code
• Releases and reacquires the lock:

If s1 and e are pure, wait can become an abort, else we really have multiple 
critical sections

lock(m);
s1;
while(e){
  wait(m,cv);
  s2;
} 
s3;
unlock(m);
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Atomic w.r.t. code holding m:

lock(m);
s1;
while(e){
  wait(m,cv);
  s2;
} 
s3;
unlock(m);

 s1;
s3

 s1;
wait

 s2;
wait

 s2;
s3
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Wrong approach #1

 s1;
s3

 s1;
wait

 s2;
wait

 s2;
s3

atomic {
 s1;
 if(e) wait(cv);
 else {s3;return;}
}
while(true){
atomic{
 s2;
 if(e) wait(cv);
 else {s3;return;}
}}

Cannot wait in atomic!

• Other threads can’t see what you did

• You block and can’t see signal
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Wrong approach #2

 s1;
s3

 s1;
wait

 s2;
wait

 s2;
s3

b=false;
atomic {
 s1;
 if(e) b=true; 
 else {s3;return;}
}
if(b) wait(cv);
while(true){
atomic{
 s2;
 if(!e){s3;return;}
}
wait(cv);
}

Cannot wait after atomic: you can miss the signal!
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Solution: listen!

 s1;
s3

 s1;listen
wait

 s2;listen
wait

 s2;
s3

b=false;
atomic {
 s1;
 if(e) {
  ch=listen(cv);
  b=true; 
 } 
 else {s3;return;}

}
if(b) wait(ch);
/* … similar for 
the loop */

You wait on a channel and can listen before blocking

(signal chooses any channel)
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The interfaces

With locks:

condvar new_condvar();
void    wait(lock,condvar);
void    signal(condvar);

With atomic:

condvar new_condvar();
channel listen(condvar);
void    wait(channel);
void    signal(condvar);

A 20-line implemention uses only atomic and lists of mutable booleans

back
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Language-design issues

“fancy features” & interaction with other constructs
As time permits, with bias toward AtomCaml [ICFP05]:
• Strong vs. weak vs. type distinction on variables
• Interaction with exceptions
• Interaction with native-code
• Condition-variable idioms
• Closed nesting (flatten vs. partial rollback)
• Open nesting (back-door or proper abstraction?)
• Parallel nesting (parallelism within transactions)
• The orelse combinator
• Memory-ordering issues 
• Atomic as a first-class function (elegant, unuseful?)
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Closed nesting

One transaction inside another has no effect!

• AtomCaml literally treats nested atomic “as a no-op”
– Abort to outermost (a legal interpretation)

• Abort to innermost (“partial rollback”) could avoid some 
recomputation via extra bookkeeping [Intel, PLDI06]
– Recall in reality there is parallelism

• Claim: This is not an observable issue, “just” an 
implementation question.

void f() { … atomic { … g() … } }
void g() { … h() … }
void h() { … atomic { … } }
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Open nesting

An open ( open { s; } ) is a total cheat/back-door
– Its effects happen even if the transaction aborts
– So can do them “right away”

Arguments against:
• It’s not a transaction anymore!
• Now caller knows nothing about effect of “wrapping 

call in atomic”
Arguments for:
• Can be correct at application level and more efficient

– (e.g., caching, unique-name generation)
• Useful for building a VM (or O/S) w/ only atomic 

[Atomos, PLDI06]
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A compromise?

• Most people agree the code in the open should never 
access memory the “outer transaction” has modified.

• So could detect this conflict and raise a run-time 
error.

• But… this detection must not have false positives 
from false sharing
– E.g., a different part of the cache line
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Parallel nesting

• Simple semantics: A fork inside an atomic is delayed 
until the commit
– Compatible with “no scheduling guarantees”

• But then all critical sections must run sequentially
– Not good for many-core

• Semantically, could start the threads, let them see 
transaction state, kill them on abort
– Now nested transactions very interesting!
– It all works out [Moss, early 80s]
– Implementation more complicated (what threads 

should see what effects of what transactions)
• Must maintain/discern fork/transaction trees
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Language-design issues

“fancy features” & interaction with other constructs
As time permits, with bias toward AtomCaml [ICFP05]:
• Strong vs. weak vs. type distinction on variables
• Interaction with exceptions
• Interaction with native-code
• Condition-variable idioms
• Closed nesting (flatten vs. partial rollback)
• Open nesting (back-door or proper abstraction?)
• Parallel nesting (parallelism within transactions)
• The orelse combinator
• Memory-ordering issues 
• Atomic as a first-class function (elegant, unuseful?)
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Why orelse?

• Sequential composition of transactions is easy:

• But what about alternate composition
• Example: “get something from either of two buffers, 

failing only if both are empty”

void f() { atomic { … } }
void g() { atomic { … } }
void h() { atomic { f(); g(); } }

void get(buf){ 
 atomic{if(empty(buf))abort; else …}}
void get2(buf1,buf2) { ??? }
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orelse

• Only “solution” so far is to break abstraction
– The greatest sin in programming

• Better:
– atomic{get(buf1);}orelse{get(buf2);}
– Semantics: On abort, try alternative, if it also 

aborts, the whole thing aborts
• Eerily similar to something Flatt just showed you?
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Memory-Ordering issues

• As Dwarkadas and Cartwright have told you, 
sequential consistency is often not provided by 
hardware or a language implementation
– For a compiler, can prevent “basic” optimizations 

like dead-code elimination
• Locking: Acquires and releases of the same lock 

must be ordered (“happens before”)
• Transactions: There are no locks!

– No great solution known (“accesses same 
memory” prohibits changing memory accesses)

– Ongoing work with Pugh & Manson
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Language-design issues

“fancy features” & interaction with other constructs
As time permits, with bias toward AtomCaml [ICFP05]:
• Strong vs. weak vs. type distinction on variables
• Interaction with exceptions
• Interaction with native-code
• Condition-variable idioms
• Closed nesting (flatten vs. partial rollback)
• Open nesting (back-door or proper abstraction?)
• Parallel nesting (parallelism within transactions)
• The orelse combinator
• Memory-ordering issues 
• Atomic as a first-class function (elegant, unuseful?)
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Basic design

no change to parser and type-checker
– atomic a first-class function
– Argument evaluated without interleaving

external atomic : (unit->α)->α = “atomic”

Advantages:
• Elegant
• Simplifies implementation (next time)
• “Same old” functional-language sermon?
• Not actually useful to programmers?
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Our plan

• Motivation (and non-motivation)
– With a “PL bias” and an overly skeptical eye

• Semantics semi-formally
• Language-design options and issues

Next lecture: Software-implementation approaches
– Brief mention of hardware (see Dwarkadas lecture 3)

Metapoint: Much research focused on implementations, but 
let’s “eat our vegetables”

Note: Examples in Caml and Java (metapoint: it largely 
doesn’t matter)
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